Abstract:
The disclosure is directed to a semiconductor structure and method of forming same. The method including: implanting a species within a region of a substrate adjacent to a gate stack; forming a first spacer laterally adjacent to the gate stack over the substrate; and forming an opening within the implanted region of the substrate, the opening being substantially U-shaped and self-aligned with the first spacer. The semiconductor structure including: a fin; a gate stack substantially surrounding the fin; a first pair of spacers over the fin and laterally adjacent to the gate stack; and a pair of substantially U-shaped cavities within the fin and on opposing sides of the gate stack, the pair of substantially U-shaped cavities being self-aligned with the first pair of spacers, wherein the pair of substantially U-shaped cavities are filled with a source/drain material.
Abstract:
Structures for spacers in a device structure for a field-effect transistor and methods for forming spacers in a device structure for a field-effect transistor. A first spacer is located adjacent to a vertical sidewall of a gate electrode, a second spacer located between the first spacer and the vertical sidewall of the gate electrode, and a third spacer located between the second spacer and the vertical sidewall of the gate electrode. The first spacer has a higher dielectric constant than the second spacer. The first spacer has a higher dielectric constant than the third spacer. The third spacer has a lower dielectric constant than the second spacer.
Abstract:
One illustrative method disclosed includes, among other things, forming a fin spacer adjacent a lower portion of a fin that is comprised of a fin spacer material, forming a conformal layer of a second spacer material on the exposed sidewalls and the upper surface of the fin, on the fin spacer and adjacent a gate structure of the FinFET device, wherein the second spacer material is a different material than the fin spacer material, performing an etching process to remove the second conformal layer from above the fin spacer to thereby re-expose the sidewalls of the fin above the fin spacer and the upper surface of the fin while forming a gate spacer comprising the second spacer material adjacent the gate structure, and forming an epi semiconductor material on the exposed sidewalls and upper surface of the fins above the first fin spacer.
Abstract:
A method of forming a source/drain region with an abrupt, vertical and conformal junction and the resulting device are disclosed. Embodiments include forming a gate electrode over and perpendicular to a semiconductor fin; forming first spacers on opposite sides of the gate electrode; forming second spacers on opposite sides of the fin; forming a cavity in the fin adjacent the first spacers, between the second spacers; partially epitaxially growing source/drain regions in each cavity; implanting a first dopant into the partially grown source/drain regions with an optional RTA thereafter; epitaxially growing a remainder of the source/drain regions in the cavities, in situ doped with a second dopant; and implanting a third dopant in the source/drain regions.
Abstract:
Approaches for forming an epitaxial (epi) source/drain (S/D) and/or a semiconductor device having an epi S/D are provided. In embodiments of the invention, a first portion of the epi S/D is formed in the S/D region on a fin in a finned substrate. After the first portion is formed, but before completion of the formation of the S/D, a secondary spacer is formed in the S/D region. Then, the remainder portion of the S/D is formed in the S/D region. As a result, the S/D is separated from the gate stack by the secondary spacer.