Abstract:
A method and apparatus for forming a circuit on an uneven two-dimensional (2-D) or three-dimensional (3-D) surface of an object is described. An amount of electrically conductive material to form a circuit between two points on the object is determined. The determined amount of electrically conductive material is deposited on a first surface of a stretchable substrate. The stretchable substrate with the deposited electrically conductive material is applied to the object to form a circuit between two points on the object.
Abstract:
A method and apparatus for forming a conductor on an uneven two-dimensional (2-D) or three-dimensional (3-D) surface is described. An amount of conductive material needed to form a conductor between two points on a surface of an object is determined. The determined amount of conductive material is deposited on a substrate. The substrate with the deposited conductive material is applied to the object to form a conductor between the two points on the surface of the object. The conductive material and substrate may be stretchable. The conductive material may be deposited by an inkjet printer or an embedded 3-D printer. The substrate with the deposited conductive material may be applied to the object by laminating the substrate with the deposited conductive material to the object.
Abstract:
A wearable electronics assembly includes one or more electronic modules coupled to a wearable electronics fabric. Each of the one or more electronic modules includes one or more plated through holes, through each of which is coupled an electrically conductive wire. The electrically conductive wire is stitched through the plated through hole and to a fabric onto which the electronic module is attached. The electronic module can include one or more electronic components coupled to a printed circuit board.
Abstract:
An RFID device assembly is fabricated by stitching an electrically conductive wire into a fabric as a pattern that forms an antenna. The two ends of the electrically conductive wire are positioned for coupling to antenna contact pads on an RFID device. The RFID device is attached to the fabric either before or after the electrically conductive wire is stitched to the fabric.
Abstract:
A printed circuit including a non-conductive substrate, a first conductive layer printed on the non-conductive substrate and one or more additional layers printed on the substrate. The first conductive layer is able to have one or more antennas each forming a predetermined pattern, a first conductive sheet and one or more conductive traces. The one or more additional layers include a first electrode printed on the top of the first conductive sheet, a buffer printed on top of the first electrode, a second electrode printed on top of the buffer and a second conductive sheet printed on top of the second electrode. The printed circuit is further able to include an RFID chip electrically coupled with the antennas and at least one of the first and second conductive sheets via the conductive traces, wherein the first and second conductive sheets, the buffer and the first and second electrodes form a power source that provides electrical power to the RFID chip.