Abstract:
A visual dynamic range (VDR) coding system creates a sequence of VDR prediction images using corresponding standard dynamic range (SDR) images and a prediction function. For each prediction image, an encoder identifies one or more areas within the prediction image suitable for post-prediction filtering. For each identified post-prediction area, a post-prediction filtering mode is selected among one or more post-prediction filtering modes. The selected post-prediction filtering mode is applied to output a filtered prediction image. Information related to the post-prediction filtering areas and the selected corresponding post-prediction filtering modes may be communicated to a receiver (e.g., as metadata) for guided post-prediction filtering. Example post-prediction filtering modes that use low-pass averaging filtering or adaptive linear interpolation are also described.
Abstract:
Sequence-level parameters are generated for an image frame sequence including sequence-level indicators for indicating metadata types present for each image frame in the sequence of image frames. Frame-present parameters are generated for a specific image frame in the sequence including frame-present indicators corresponding to the metadata types as indicated in the sequence-level parameters. The frame-present indicators identify first metadata types for which metadata parameter values are to be encoded in a coded bitstream as metadata payloads. The image frame sequence, the sequence-level parameters, the frame-present parameters and the metadata payloads are encoded in the coded bitstream. A recipient device can generate, from the specific image frame based partly on the metadata parameter values determined for the first metadata types, a target display image for a target display.
Abstract:
In a method to code and transmit scalable HDR video signals, HDR signals are processed and encoded in the IPT-PQ color space to generate a base layer at reduced spatial resolution and/or dynamic range, and an enhancement layer with a residual signal. A signal reshaping block before the base layer encoder allows for improved coding of HDR signals using a reduced bit depth. A decoder can use a BL decoder and backward reshaping to generate a decoded BL HDR signal at a reduced dynamic range and/or spatial resolution, or it can combine the decoded BL HDR signal and the EL stream to generate a decoded HDR signal at full dynamic range and full resolution.
Abstract:
Systems and methods are disclosed for filtering metadata to be used in display management. Given an input video stream and input metadata comprising at least one of minimum, average, or maximum luminance values of the video frames in the video stream, values of a function of the input metadata are filtered using a temporal filter to generate filtered metadata, wherein the filtering is based only on metadata for input frames in the same scene. Methods for temporal filtering based on an exponential moving average filter or a look-ahead sliding window filter are presented, including methods for scene-change detection using the input metadata.
Abstract:
In a method to code and transmit scalable HDR video signals, HDR signals are processed and encoded in the IPT-PQ color space to generate a base layer at reduced spatial resolution and/or dynamic range, and an enhancement layer with a residual signal. A signal reshaping block before the base layer encoder allows for improved coding of HDR signals using a reduced bit depth. A decoder can use a BL decoder and backward reshaping to generate a decoded BL HDR signal at a reduced dynamic range and/or spatial resolution, or it can combine the decoded BL HDR signal and the EL stream to generate a decoded HDR signal at full dynamic range and full resolution.
Abstract:
In an embodiment, a source video signal comprising reference code values and mapping function parameters for one or more mapping functions to map the reference code values to device-specific pixel values. The reference code values and the mapping function parameters are combined into first video frames in a first video signal format. The mapping function parameters represent DM metadata carried in the first video frames. Second video frames in a second video signal format are generated based on the first video frames in the first video signal format and a mapping between the first video signal format and the second video signal format. The second video frames are sent to a video sink device through the video link in an encoded video signal of the second video signal format.
Abstract:
A sequence of visual dynamic range (VDR) images is encoded using a standard dynamic range (SDR) base layer and one or more enhancement layers. A predicted VDR image is generated from an SDR input by using a weighted, multi-band, cross-color channel prediction model. Exponential weights with an adaptable decay parameter for each band are also presented.
Abstract:
Error control in multi-stream visual dynamic range (VDR) codecs is described, including for a case of a layer-decomposed (non-backward compatible) video codecs. Error control can be provided by concealing lost and/or corrupted data in data frames of a decoded VDR bitstream prior to rendering a corresponding VDR image. Various algorithms and methods for concealing lost and/or corrupted data are provided.
Abstract:
An encoder receives a target image in a standard dynamic range and a guide image in a high dynamic range, wherein both the target image and the guide image represent the same scene. A color transient improvement (CTI) filter is selected to predict a chroma component of a decoded version of the target image based on both the luma and chroma components of the target image and the guide image. The filtering coefficients for the CTI filter are computed by minimizing an error measurement (e.g., MSE) between pixel values of the decoded image and the guide image. The computed set of filtering coefficients is signaled to a receiver (e.g., as metadata). A decoder receives the coded image and the metadata, and applies the same CTI filter to the decoded image to generate an output image.
Abstract:
An encoder receives one or more input pictures of enhanced dynamic range (EDR) to be encoded in a coded bit stream comprising a base layer and one or more enhancement layer. The encoder comprises a base layer quantizer (BLQ) and an enhancement layer quantizer (ELQ) and selects parameters of the BLQ and the ELQ by a joint BLQ-ELQ adaptation method which given a plurality of candidate sets of parameters for the BLQ, for each candidate set, computes a joint BLQ-ELQ distortion value based on a BLQ distortion function, an ELQ distortion function, and at least in part on the number of input pixels to be quantized by the ELQ. The encoder selects as the output BLQ parameter set the candidate set for which the computed joint BLQ-ELQ distortion value is the smallest. Example ELQ, BLQ, and joint BLQ-ELQ distortion functions are provided.