Video coding and delivery with both spatial and dynamic range scalability

    公开(公告)号:US10575005B2

    公开(公告)日:2020-02-25

    申请号:US15745647

    申请日:2016-07-20

    Abstract: In a method to code and transmit scalable HDR video signals, HDR signals are processed and encoded in the IPT-PQ color space to generate a base layer at reduced spatial resolution and/or dynamic range, and an enhancement layer with a residual signal. A signal reshaping block before the base layer encoder allows for improved coding of HDR signals using a reduced bit depth. A decoder can use a BL decoder and backward reshaping to generate a decoded BL HDR signal at a reduced dynamic range and/or spatial resolution, or it can combine the decoded BL HDR signal and the EL stream to generate a decoded HDR signal at full dynamic range and full resolution.

    Backward-compatible HDR codecs with temporal scalability

    公开(公告)号:US10440401B2

    公开(公告)日:2019-10-08

    申请号:US15481015

    申请日:2017-04-06

    Abstract: A processor for video coding receives a full-frame rate (FFR) HDR video signal and a corresponding FFR SDR video signal. An encoder generates a scalable bitstream that allows decoders to generate half-frame-rate (HFR) SDR, FFR SDR, HFR HDR, or FFR HDR signals. Given odd and even frames of the input FFR SDR signal, the scalable bitstream combines a base layer of coded even SDR frames with an enhancement layer of coded packed frames, where each packed frame includes a downscaled odd SDR frame, a downscaled even HDR residual frame, and a downscaled odd HDR residual frame. In an alternative implementation, the scalable bitstream combines four signals layers: a base layer of even SDR frames, an enhancement layer of odd SDR frames, a base layer of even HDR residual frames and an enhancement layer of odd HDR residual frames. Corresponding decoder architectures are also presented.

Patent Agency Ranking