Abstract:
The present disclosure provides a control unit of display device and a display device. The control unit of display device includes: a back plate a plurality of circuit structures, the plurality of circuit structures being arranged on the back plate; a plurality of electric field shielding structures, each of the electric field shielding structures being arranged between the circuit structures and configured to shield an electric field between the circuit structures, wherein each of the electric field shielding structures includes a plurality of shielding strips, the plurality of shielding strips are spaced apart from each other and projections of the shielding strips a corresponding side of the circuit structure are continuous and uninterrupted.
Abstract:
The application discloses an array substrate, comprising a base, a conductive pattern layer disposed on the base, a transparent electrode layer, and an insulating layer disposed between the conductive pattern layer and the transparent electrode layer, the conductive pattern layer comprises a plurality of first conductive patterns, the transparent electrode layer comprises a plurality of transparent electrodes, each of the transparent electrodes is electrically coupled to a corresponding one of the first conductive patterns through a corresponding via hole in the insulating layer, wherein at a position where at least one via hole is located, a stepped structure is formed between the first conductive pattern corresponding to the via hole and the base and/or the insulating layer such that a groove is formed at an upper surface of the array substrate at a position corresponding to the via hole. The application further discloses a display device.
Abstract:
An array substrate and a display device are provided. The array substrate includes a display region and a non-display region surrounding the display region. The non-display region includes a connection region where a plurality of connection pads is arranged, and for at least parts of the connection pads, two adjacent connection pads are not overlap each other or partially overlap each other in a first direction.
Abstract:
Disclosed are an electrostatic protection structure, array substrate and display device. The electrostatic protection structure includes a first electrostatic protection unit and a second electrostatic protection unit which are disposed in sequence. One end of the first electrostatic protection unit is connected with a first electrostatic beginning end, and another end of the first electrostatic protection unit is connected with an electrostatic discharge end; the second electrostatic protection unit includes a first conduction structure, of which one end is connected with a second electrostatic beginning end and another end is connected with an electrostatic terminating end. The second electrostatic beginning end is a outflow end for static electricity, the first conduction structure is configured to disconnect from the second electrostatic beginning end and/or said electrostatic terminating end when static electricity passes the first conduction structure.
Abstract:
An array substrate, a display panel and a display apparatus are disclosed. The array substrate includes a plurality of gate lines (10; 50) and a plurality of data lines (30; 51), and pixel units arranged in an array. Each of the pixel units includes one pixel electrode (41; 42) and one thin film transistor, the data line (30; 51) serve as a source electrode (31; 311) of the thin film transistor, the gate line (10; 50) serve as a gate electrode (11) of the thin film transistor, and a drain electrode (32; 321; 322) of the thin film transistor is electrically connected to the pixel electrode (41; 42), at least one of the gate lines (10; 50) and the data lines (30; 51) has a recess (363; 364) provided thereon aligned with a spacer for fixing. With the recess (363; 364), the post spacer is prevented from moving to affect the display region when the substrate is bent and deformed under an external pressure.
Abstract:
A substrate and a display device are disclosed. The substrate includes a plurality of common electrode lines that are spaced at an interval, configured for providing corresponding pixel units with a common voltage; at least two connecting lines, each of which is located in a display region, and which are configured for achieving mutual electrical connection between at least two of the common electrode lines that are adjacent.
Abstract:
An array substrate, a manufacturing method thereof and a display device are provided. The array substrate comprises a plurality of gate lines (102) and a plurality of data lines (101); a region defined by adjacent data lines (101) and adjacent gate lines (102) is a pixel unit; the pixel unit includes a common electrode line (103), a pixel electrode (104), a thin film transistor (105) and an auxiliary electrode (202); a first end of the auxiliary electrode (202) is electrically connected with a drain electrode (203) of the thin film transistor (105); and a second end of the auxiliary electrode (202) is electrically connected with the pixel electrode (104). The array substrate is used for enhancing an electric field within the peripheral range of the pixel electrode (104) of the pixel unit and avoiding the phenomenon of light leakage at an edge of the pixel unit.
Abstract:
An array substrate and a display device are provided. A common electrode line with the same extending direction as a gate line is disposed at one end near a thin film transistor, and forms a storage capacitor with a drain electrode of the thin film transistor. As compared with the case in the prior art that a common electrode line and a thin film transistor in an array substrate are disposed at both ends of a pixel, respectively, and it is necessary to separately provide a storage capacitance electrode useful for forming a storage capacitor with the common electrode line, the pixel region occupied by the thin film transistor and the common electrode line can be effectively decreased. Thus, the aperture ratio is increased, and the display brightness of an IPS liquid crystal display device is enhanced.
Abstract:
The invention provides an array substrate and a display device. The array substrate comprises a plurality of gate lines and a plurality of data lines which are arranged crosswise and are insulated from each other, and a plurality of pixel units, wherein each pixel unit comprises a control section and a display section, each of which is symmetrically distributed with the central line of a corresponding gate line as a symmetry axis, the control section is located at a cross-point of the gate line and the data line, and is at least partially overlapped with the gate line and the data line, the display section is located at a region defined by the gate line and the data line; and the control section is connected to the display section to control the display section for display. In the present invention, the aperture ratio of the array substrate is increased.
Abstract:
Provided are a display substrate and a display device. The display substrate includes a driving transistor and a storage capacitor, the storage capacitor includes a first electrode plate and a second electrode plate, the second electrode plate is arranged in a same layer as the channel of the driving transistor, the second electrode plate is closer to the base substrate than the first electrode plate, an orthographic projection of the second electrode plate on the base substrate overlaps with an orthographic projection of the pixel opening on the base substrate, the display substrate satisfies a following relationship: a value range of (W*L+S2)*M1/M2 is [0.014, 0.133], and a value range of S2/(W*L) is [2.82, 28.85], where W is a width of the channel of the driving transistor, L is a length of the channel of the driving transistor, S2 is a facing area between the second electrode plate and the first electrode plate, M1 is a count of pixel openings in the display substrate, and M2 is an area of the display substrate, thus increasing the facing area between the electrode plates of the storage capacitor, increasing the capacitance, and improving the holding capacity of the capacitor, and being beneficial to increasing the area ratio of the storage capacitor to the pixel opening, increasing the area proportion of the storage capacitor, and improving the display quality.