Abstract:
Methods and apparatus for a sensor having a die supporting a magnetic field sensor element, a leadframe having opposed first and second surfaces and leadfingers, a passive component coupled to the first and second ones of the leadfingers such that the component is an integrated part of an IC package, and a magnet adjacent to the second surface of leadframe to back bias the magnetic field sensor element.
Abstract:
Methods and apparatus to provide an integrated circuit having a magnetic sensing element and fault detection module coupled to the sensing element, the fault detection module including circuitry to detect a fault condition and to self-test operation of the circuitry for detecting the fault condition. In illustrative embodiments, a fault pin indicates the fault condition.
Abstract:
An integrated circuit can have a first substrate supporting a magnetic field sensing element and a second substrate supporting another magnetic field sensing element. The first and second substrates can be arranged in a variety of configurations. Another integrated circuit can have a first magnetic field sensing element and second different magnetic field sensing element disposed on surfaces thereof.
Abstract:
Magnetic field sensors and associated methods of manufacturing the magnetic field sensors include molded structures to encapsulate a magnetic field sensing element and an associated die attach pad of a lead frame and to also encapsulate or form a magnet or a flux concentrator.
Abstract:
A sensor integrated circuit configured to generate a sensor output current indicative of a sensed parameter includes a power connection to receive a supply voltage, a ground connection, a sensing circuit configured to generate a parameter current proportional to the sensed parameter, and an output connection at which the sensor output current is provided. An output current calibration circuit is configured to determine an offset current that corresponds to a bias voltage at the output connection equal to a fixed percentage of the supply voltage when the parameter current is substantially zero. The sensor output current is provided as a combination of the parameter current and the offset current.
Abstract:
Aspects of the present disclosure include systems, structures, circuits, and methods providing integrated circuit (IC) packages or modules having a transformer with first and second spiral coils disposed on or adjacent to a substrate, each including one or more coil portions on one or multiple levels and having varying distances to an aperture or coil-origin region. A portion of a soft ferromagnetic core of the transformer can pass through the aperture or be adjacent to the coil origin region. The IC packages and modules may include various types of circuits; in some examples, IC packages or modules may include a galvanically isolated gate driver or other high voltage circuit.
Abstract:
Methods and apparatus wavelength discrimination in a LiDAR system. An example embodiment, includes illuminating a field of view (FOV) with transmitted light having different wavelengths at different regions in the FOV, focusing incoming light with a lens of the LiDAR system, and diffracting the focused light from the lens with a diffraction optical element to generate signals having the different wavelengths to respective regions of a detector array, wherein each pixel position in the array corresponds to one of the different wavelengths and to a spatial location in the FOV. The data from the pixel array can be processed to discriminate any of the incoming light not transmitted by the LiDAR system.
Abstract:
An integrated circuit package and method of fabrication are described. The integrated circuit package includes a lead frame having a first surface and a second opposing surface and a semiconductor die having a first, active surface in which circuitry is disposed and a second opposing surface attached to the first surface of the lead frame. A magnet attached to the second surface of the lead frame has a non-contiguous central region and at least one channel extending laterally from the central region. An overmold material forms an enclosure surrounding the magnet, semiconductor die, and a portion of the lead frame.
Abstract:
A sensor package comprising a lead frame, a current sensor die, and an interposer. The lead frame includes: (i) a primary conductor, (ii) a plurality of secondary leads, and (iii) a layer of dielectric material that is disposed between the primary conductor and the plurality of secondary leads. The current sensor die includes one or more sensing elements. The current sensor die is configured to measure a level of electrical current through the primary conductor of the lead frame. The interposer is disposed over the layer of dielectric material. The interposer includes a plurality of conductive traces that are configured to couple each of a plurality of terminals of the current sensor die to a respective one of the plurality of secondary leads.
Abstract:
An integrated circuit package and method of fabrication are described. The integrated circuit package includes a lead frame having a first surface and a second opposing surface and a semiconductor die having a first, active surface in which circuitry is disposed and a second opposing surface attached to the first surface of the lead frame. A magnet attached to the second surface of the lead frame has a non-contiguous central region and at least one channel extending laterally from the central region. An overmold material forms an enclosure surrounding the magnet, semiconductor die, and a portion of the lead frame.