Abstract:
A method and apparatus are provided for performing acquisition, synchronization and cell selection within an MIMO-OFDM communication system. A coarse synchronization is performed to determine a searching window. A fine synchronization is then performed by measuring correlations between subsets of signal samples, whose first signal sample lies within the searching window, and known values. The correlations are performed in the frequency domain of the received signal. In a multiple-output OFDM system, each antenna of the OFDM transmitter has a unique known value. The known value is transmitted as pairs of consecutive pilot symbols, each pair of pilot symbols being transmitted at the same subset of sub-carrier frequencies within the OFDM frame.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets S1 for each codeword c1 of the codebook C. Each codeword subset S1 defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset S1 are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
Abstract:
Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
Abstract:
In a wireless multi-hop relay network arranged in a tree topology, the base station and one or more relay stations are associated as a virtual base station (VBS). The base station and each relay station have a unique virtual base station identifier (VBS-ID) associated with the path defined by the base station and the one or more relay stations. A relay station in the branch uses its VBS-ID for communicating with an attached subscriber station (e.g. a mobile station) such that communications between the base station and subscriber station occur via the VBS. Subscriber station data communications are relayed between the base station and the one or more relay stations over the VBS via a tunnel connection. The VBS is autoconfigurable. Mobility for subscriber stations and relay stations is provided through reconfiguration of VBS's.
Abstract:
A wireless communication system includes an intermediate node, a first node and a second node. A apparatus for implementing MIMO based network coding, comprises the first node transmitting first data to the intermediate node, and the second node transmitting second data to the intermediate node. Both the first node and the second node may use spatial multiplexing or time division multiplexing or frequency division multiplexing on a common/different resource. The intermediate node receives the transmissions from the first node and second node, and performs network coding on the first data and second data using a predefined network coding scheme to produce network coded information. The intermediate node transmits the network coded information to the first node and second node using multi-user MIMO and each first or second node receives the MIMO transmissions from the intermediate node and applies network decoding procedures to recover the first data and second data.
Abstract:
In some embodiments of the invention, OFDM symbols are transmitted as a plurality of clusters. A cluster includes a plurality of OFDM sub-carriers in frequency, over a plurality of OFDM symbol durations in time. Each cluster includes data as well as pilot information as a reference signal for channel estimation. In some embodiments, a plurality of clusters collectively occupy the available sub-carrier set in the frequency domain that is used for transmission. In some embodiments of the invention data and/or pilots are spread within each cluster using code division multiplexing (CDM). In some embodiments pilots and data are separated by distributing data on a particular number of the plurality of OFDM symbol durations and pilots on a remainder of the OFDM symbol durations. CDM spreading can be performed in time and/or frequency directions.
Abstract:
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
Abstract:
One or more relay stations may be employed along a wireless communication access path between an ingress station and an egress station. A logical communication tunnel is established between the ingress and egress stations through any number of intermediate relay stations to handle session flows of PDUs. As PDUs arrive, the ingress station may determine and add scheduling information to the PDUs before they are delivered to the downstream intermediate relay stations or egress stations. The scheduling information is used by the downstream stations to schedule the PDUs for further delivery. The scheduling information may also be used by the egress station to schedule the PDUs for delivery. The scheduling information added to the PDU by the ingress station bears on a QoS class associated with the PDU, a deadline for the egress station to deliver the PDU, or a combination thereof.
Abstract:
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
Abstract:
A method and system for allocating shareable wireless transmission resources. A resource pool is established. The resource pool is divided into a plurality of physical layer allocation units usable for wirelessly transmitting control information and traffic data. The allocation units are assigned at the media access control layer for the wireless transmission of the control information and traffic data. The system and method of the present invention also allows mobile stations to be dynamically grouped into multicast groupings to reduce system overhead resource requirements.