Abstract:
A current-reusing bleeding mixer capable of providing a higher conversion gain, linearity and lower noise figure employing a field-effect transistor includes a first to a fourth transistor and a first and a second load element. The first transistor amplifies a radio frequency (RF) signal. The second and the third transistor, each connected to the first transistor, receive a balanced local oscillator (LO) signal to mix it with the RF signal. The first and the second load element are connected between a supply voltage source and the second transistor and between the supply voltage source and the third transistor, respectively. The fourth transistor, connected between the supply voltage source and the first transistor, amplifies the RF signal and bleeds a current from the supply voltage source.
Abstract:
A single bias block for a single or multiple low voltage RF circuits including one or more amplifiers and one or more single or double balanced mixers with compensation for temperature and integrated circuit process parameters. The power supply may be a lower voltage without sacrificing the dynamic range of the amplifier and/or mixer by applying full power supply voltage to the load with the bias applied to the base circuit through an operational amplifier and/or buffer circuit. For the mixer, a lower noise figure may also be realized by moving the gain control impedance from the emitter to the collector circuit. The circuits may be discrete components or part of an integrated circuit. Methods are disclosed for reducing the power supply voltage without affecting the dynamic range of an amplifier, for temperature and process parameter compensation, and for controlling the gain of a mixer without affecting input or output impedance.
Abstract:
A frequency synthesizer includes: a delta sigma modulator that outputs an input value to a sequentially changing digital value; an analog path unit that converts the digital value to an analog value according to a first conversion gain; an accumulator that accumulates a difference between the input and digital values; a digital to analog converter (DAC) that compensates an output value of the accumulator according to a second conversion gain; a correction loop that extracts analog tendency by adding an output of the analog path unit and an output of the DAC and that extracts digital tendency from an output of the accumulator and adjusts the second conversion gain by comparing the analog and digital tendency; and a voltage control oscillator that generates an output frequency by adding an output of the analog path unit and an output according to an adjusted second conversion gain of the DAC.
Abstract:
A direct conversion receiver includes: a high linearity mixer device including a sampler unit charge-sampling an input current according to a sampling frequency, and a buffer unit receiving an output signal from the sampler unit while having a low input impedance, amplifying the received signal, and outputting a current signal; and a filter device decimating an output signal from the mixer device and FIR-filtering the decimated signal.
Abstract:
A variable gain amplifier including: a differential amplification unit amplifying and outputting a difference between a first input signal and a second input signal inputted via a first input terminal and a second input terminal, respectively, according to a first bias current of the first input terminal and second input terminal, to a first output terminal and a second output terminal; a diode-connected load unit comprising loads diode-connected to the first output terminal and second output terminal, respectively, the load receiving a second bias current; and a gain control unit controlling a gain between the input terminals and the output terminals of the differential amplification unit by controlling the size of the first bias current and second bias current.
Abstract:
A low power super regenerative receiver and a method of reducing the power consumption of the low power super regenerative receiver are provided. The super regenerative receiver includes: an oscillator having a start-up time period starting oscillation that varies according to an existence of an input signal; and a power controller supplying power within the start-up time period of the oscillator.
Abstract:
Provided are a semiconductor package in which wiring layers connected to a semiconductor chip electrically contact circuit patterns of a substrate and a method of manufacturing the same. The semiconductor package includes the substrate and the semiconductor chip. The substrate includes a first concave portion disposed on the upper surface thereof and a plurality of the circuit patterns disposed adjacent to the first concave portion. The semiconductor chip is mounted in the substrate to correspond to the concave portion. The semiconductor chip comprises a wafer, pads disposed on the wafer, and wiring layers disposed on the upper surface and on one side surface of the wafer, wherein first portions disposed on the upper surface of the wafer are connected to the pads and second portions disposed on the one side surface of the wafer contact the circuit patterns of the substrate.
Abstract:
A differential voltage controlled oscillator comprises first and second transistors having opposite magnitudes and directions of currents flowing to a third electrode from a second electrode corresponding to a voltage between first and second electrodes; and a resonance circuit coupled to the second electrodes of the first and second transistors and controlling a frequency of an oscillation signal corresponding to a control voltage. The second electrode of the first transistor is coupled to the first electrode of the second transistor to form a first output terminal, the first electrode of the first transistor is coupled to the second electrode of the second transistor to form a second output terminal, and the third electrodes of the first and second transistors are coupled to first and second powers.
Abstract:
A local oscillator without a frequency divider is provided. The local oscillator includes a quadrature voltage controlled oscillator generating I and Q signals having a frequency which is one-third of a local oscillation frequency, and a differential second-harmonic signal having a frequency which is two-thirds of the local oscillation frequency, a poly-phase filter converting the differential second-harmonic signal input from the quadrature voltage controlled oscillator into I and Q signals, and a single side band (SSB) mixer receiving the I and Q signals having the frequency which is one-third of the local oscillation frequency from the quadrature voltage controlled oscillator as an input and receiving the I and Q signals having the frequency which is two-thirds of the local oscillation frequency from the poly-phase filter as an input, and outputting the I and Q signals having the local oscillation frequency.
Abstract:
Disclosed is a quadrature VCO (voltage controlled oscillator) which comprises a first delay cell including a first switching transistor and a second switching transistor, the first delay cell outputting first and second in-phase signals with different phases; and a second delay cell including a third switching transistor and a fourth switching transistor, the second delay cell outputting first and second quadrature-phase signals with different phases. The first and second quadrature-phase signals are applied to back gates of the first and second switching transistors, and the first and second in-phase signals are applied to back gates of the fourth and third switching transistors.