Abstract:
A laser beam experimentation kit, including an accessory device for modulating the intensity of the visible laser beam produced as output from a laser pointer. The accessory device comprises a printed circuit(PC) board of physically thin construction, which is adapted for slidable insertion between the conductive tip portion and the conductive housing portion of a pen-clip actuatable laser pointer. A pair of conductive pads are formed on the upper and lower surfaces of the PC board. An input signal jack is mounted on PC board for the purpose of receiving a mated plug connector that is connected to a flexible cable carrying an electrical input signal. An electronic circuit and a battery power source are also mounted on the upper surface of the PC board. The function of the electronic circuit is to respond to a predetermined signal characteristic (e.g., the amplitude, frequency or phase) of the input signal supplied to the input signal jack, and to provide a variable load between the pair of conductive pads formed on the PC board. In this way, when the PC board is slidably inserted between the conductive tip portion and the conductive housing portion of the pen-like housing of the laser pointer, the pair of conductive pads on the PC board automatically establish electrical contact therewith without problems of alignment or the like. During joint operation of the laser pointer and the accessory device, the impedance of the variable load varies in response to variations in the predetermined signal characteristic of the electrical input signal. Such variations in the impedance of the variable load automatically modify the flow of electrical current through the laser diode in the laser pointer and thus modulates the intensity of the laser beam in accordance therewith.
Abstract:
Method and apparatus for automatically reading bar code symbols is disclosed. One aspect of the present invention concerns a method of reading bar code symbols using an automatic hand-holdable bar code symbol reading device. In general, the automatic bar code symbol reading device comprises a hand-holdable housing containing operative elements which provide an object detection field and a scan field each defined external to the housing. The method involves automatically detecting the presence of an object within the object detection field by sensing energy reflected off the object. In a preferred embodiment, the object sensing energy is IR radiation produced from an energy reflects off the object source disposed within the housing. In automatic response to the detection of the object within the object detection field, the hand-holdable device detects the presence of a bar code within the scan field using a laser beam produced within the housing. Then, in automatic response to the detection of a bar code in the scan field, the automatic hand-holdable bar code symbol reading device reads the detected bar code in the scan field by producing scan data signals from the detected bar code and thereafter collecting and analyzing the same. Another aspect of the present invention concerns a hand-holdable data collection device adapted for use with the automatic bar code symbol reading device to form a portable symbol reading system characterized by versatility and simplicity of use.
Abstract:
A wireless code symbol reading system including a wireless hand-supportable code symbol reader in two-way RF communication with a base station operably connected to a host system, by way of an RF-based wireless data communication link having a predetermined RF communication range over which two-way communication of data packets can occur. The wireless hand-supportable code symbol reader is programmed to automatically detect when it is located inside and outside of the predetermined RF communication range. When the wireless reader is inside the RF communication range, then symbol character data is automatically transmitted to the base station, and when the wireless reader is located outside of the RF communication range, then symbol character data is automatically collected and stored in a data packet buffer, until the wireless reader has re-entered its RF communication range.
Abstract:
A wireless automatically-activated bar code symbol reading system having a wireless hand-supportable bar code symbol reader in two-way RF communication with a base station, by way of an RF-based wireless data communication link having a predetermined RF communication range. A manually-operated data transmission activation switch is integrated with the hand-supportable housing, for generating a data transmission control activation signal in response to the activation of the data transmission switch within a first predetermined time period. A device controller is programmed to automatically detect when the wireless reader is located inside of the predetermined RF communication range, and thereuponautomatically transmit to a first RF-based transceiver, the symbol character data string produced at substantially the same time when the data transmission control activation signal is generated while the wireless reader is located inside of the predetermined RF communication range.
Abstract:
A kit provides implements for applying a decorative laminate to a target surface. The kit comprises an applicator adapted to hold a roll of surface covering material and to apply the surface covering material to a target surface. The kit also comprises instructions for the application of a surface covering material to the target surface.
Abstract:
A wireless automatically-activated bar code symbol reading system for use in a work environment, the system including a device controller programmed to automatically detect when a wireless hand-supportable bar code symbol reader is located inside of a predetermined RF communication range based on measuring the strength of a detected reference signal, and thereupon to automatically transmit to a first RF-based transceiver, the symbol character data string produced while the wireless hand-supportable bar code symbol reader is located inside of the predetermined RF communication range. Also, the device controller is programmed to automatically detect when the wireless hand-supportable bar code symbol reader is located outside of the predetermined RF communication range based on measuring the strength of the detected reference signal, and thereupon to automatically collect and store in the data packet group buffer, the symbol character data string produced while the wireless hand-supportable bar code symbol reader is located outside of the predetermined RF communication range.
Abstract:
Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner. Each time the scanned bar code symbol is successfully read during a bar code symbol reading cycle, a new bar code symbol character string is produced, while an indicator light on the hand-supportable housing is actively driven. During the bar code symbol reading cycle, the user actuates the data transmission switch producing a data transmission control activation signal and enabling a currently or subsequently produced symbol character data string to be automatically selected and transmitted to the host system. By virtue of the present invention, automatically-activated hand-supportable bar code symbol readers are now able to accurately read, in an unprecedented manner, bar code symbols on bar code menus, consumer products positioned in crowded point-of-sale environments, and other objects requiring automatic identification and/or information access.
Abstract:
Method and apparatus for automatically reading bar code symbols using a reading device containing a laser beam configured to provide a scan field. The method involves automatically detecting the presence of a bar code within the scan field by flickering the laser beam. In automatic response to the detection of a bar code, the automatic bar code symbol reading device generates a laser beam scanning pattern and reads the detected bar code by producing scan data signals from the detected bar code and thereafter collecting and analyzing these data signals. Further aspects of the present invention relate to hand-holdable data collection devices adapted for use with the automatic bar code symbol reading device to form a portable symbol reading system characterized by versatility and simplicity of use.
Abstract:
An automatically-activated laser scanning 2-D bar code symbol reading system for use in a work environment, wherein a hand-supportable 2-D bar code symbol reader is arranged in two-way communication with a base station operably connected to a host system. The 2-D bar code symbol reader includes (i) a bar code symbol data detector for automatically detecting each line of said 2-D bar code symbol, and producing a line of scan data for buffering in a buffer memory, (ii) an audible data capture buffering indicator for automatically generating audible sounds as each line of bar code symbol data is captured and buffered in said buffer memory, and (iii) a decode processor for automatically decode processing an entire set of scan data collected in said buffer memory and corresponding to a scanned 2-D bar code symbol, and generating a symbol character data string representative of said read 2-D bar code symbol.
Abstract:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.