摘要:
An electro-optic integrated circuit including an addressable array of light emitting devices, a column decoder and a plurality of address lines formed on the substrate. There are address lines each including an external connection pad. The decoder includes a switching circuit connected to each column for activating the column and a plurality of sets of diodes connected to the address lines and the switching circuits so that each set of diodes has a unique code produced by a combination of diodes in that set .and the address lines to which the diodes in that set are connected.
摘要:
A planar semiconductor laser having low thermal and series resistance is fabricated. The semiconductor laser has an optical waveguide and a lateral current injection path provided by a conductive region. The conductive region disorders the active region and the first 1/4 wave stack of the laser, which reduces the reflectivity, therefore allowing control of the optical waveguide independent of the current flow. By forming the conductive region, the laser of the present invention can have stable optical characteristics and a bigger emission spot due to the weak built-in waveguide, thus resulting in the formation of a device having high output and a low thermal and series resistance.
摘要:
A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
摘要:
A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94) Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
摘要:
A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure (117). The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers (92, 94). One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers (92, 94, 102) to expose the bond pads (42), forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
摘要:
A method and apparatus for decreasing contact resistance between a ohmic contact (120) and a semiconductor material (106) are disclosed. Increased contact resistance, which occurs as a result of encroachment of the ohmic contact (120) into the semiconductor material (106) is compensated for by notching edges of the ohmic contact (1210) to increase the effective surface area between abutting surfaces of the ohmic contact (120) and semiconductor material (106). The increase in surface area increases the effective transfer length of the contact, which correspondingly reduces contact resistance and improves device performance.
摘要:
A light emitting diode display package and method of fabricating a light emitting diode (LED) display package including a light emitting diode array on a substrate, having row and column connection pads routed to display connection pads positioned on an uppermost surface of the LED array device, a separate silicon driver device having connection pads routed to an uppermost surface, positioned to cooperatively meet those of the LED device when properly registered, the LED device flip chip bump bonded to the driver device using standard C5 DCA, an underfill layer positioned between the space defined by the LED device and the driver device. The LED display and driver device package subsequently having selectively removed the substrate onto which the LED array was initially formed. The light emitted from the LED display device, being emitted through the remaining indium-gallium-aluminum-phosphide (InGaAlP) epilayer of the LED device.
摘要:
A light emitting diode display package and method of fabricating a light emitting diode (LED) display package including a light emitting diode array on a substrate, having row and column connection pads routed to display connection pads positioned on an uppermost surface of the LED array device, a separate silicon driver device having connection pads routed to an uppermost surface, positioned to cooperatively meet those of the LED device when properly registered, the LED device flip chip bump bonded to the driver device using standard C5 DCA, an underfill layer positioned between the space defined by the LED device and the driver device. The LED display and driver device package subsequently having selectively removed the substrate onto which the LED array was initially formed. The light emitted from the LED display device, being emitted through the remaining indium-gallium-aluminum-phosphide (InGaAlP) epilayer of the LED device.
摘要:
A semiconductor device structure comprises a semiconductor substrate having a semiconductor layer of the same conductivity type formed on its first surface. A drain contact is formed on the second surface of the substrate and conductive regions having the opposite conductivity type of the substrate are formed in the semiconductor layer and are separated by a predetermined distance. Channel regions having the same conductivity type as the substrate are disposed above the conductive regions and source regions are disposed therein. A shielding region is then formed on the surface of the device structure in the area between the conductive regions. The structure allows for reduced or eliminated gate-drain capacitance, reduced output conductance and increased breakdown voltage capability.