Abstract:
A sensor system for remote object detection, tracking, characterization, and discrimination can have a plurality of sensors. A shared optical train that can facilitate blending of information from the sensors, so as to provide a single view for the plurality of sensors. Small and/or dim objects can be more readily detected. High-resolution 3 dimensional space object imagery and on-demand target information gathering can be provided with reduced data latency. The undesirable effects of atmospheric turbulence along the aiming direction can be mitigated even when there is a high relative velocity between the surveillance platform and remote target.
Abstract:
A light measuring device is disclosed which can take in light from different portions of a plane light source efficiently to carry out measurement. The light measuring device for measuring light from a plane light source includes a spatial division device configured to carry out operation for successively taking in light from different portions of the plane light source. An optical condensing device condenses the light from the different portions of the plane light source taken in by the operation of the spatial division device. A detector receives the light condensed by the optical condensing device and outputs a signal corresponding to the received light.
Abstract:
A system for detecting a predetermined wavelength of light emitted from an area on the surface of a chemical array is provided. Aspects of the system include: a beam splitter for splitting emitted light into two or more light beams and a detector for detecting photons in each of the two produced light beams. Methods of detecting light using the subject system, programming for performing the subject methods and an array reader containing the subject system are also provided.
Abstract:
A fluorescence spectrophotometer system may be implemented in scanning fluorescence polarization detection applications. A wavelength and area scanning fluorescence spectrophotometer system may include a light source, an excitation double monochromator, an excitation/emission light transfer module, an emission double monochromator, a high speed timer-counter circuit board, a precision positioning apparatus for positioning a sample relative to the focal plane of the excitation light, and polarizing filters at the excitation side and the emission side. The system may be operative to analyze more than one fluorescent compound in the sample; additionally or alternatively, the system enables analysis of samples from selected ones of a plurality of samples.
Abstract:
A method of generating a design pattern for a spatial radiation modulator to encode two or more selected spectral components in one or more spectral ranges for the chemometric analysis of a group of analytes. The method includes obtaining a corresponding spectrum for each of the analytes, defining a set of initial spectral windows, constructing a chemometric matrix to relate concentrations of the analytes to intensities of the spectral components, deriving optimized spectral windows, and translating the center wavelength and the bandwidth of each of the optimized spectral windows into a corresponding optimized annular region on the modulator.
Abstract:
A fluorescence spectrophotometer system may be implemented in scanning fluorescence polarization detection applications. A wavelength and area scanning fluorescence spectrophotometer system may include a light source, an excitation double monochromator, an excitation/emission light transfer module, an emission double monochromator, a high speed timer-counter circuit board, a precision positioning apparatus for positioning a sample relative to the focal plane of the excitation light, and polarizing filters at the excitation side and the emission side. The system may be operative to analyze more than one fluorescent compound in the sample; additionally or alternatively, the system enables analysis of samples from selected ones of a plurality of samples.
Abstract:
Scanning interferometer and method of using same providing for rapid, reliable detection of chemical compounds that are readily implemented in low-cost, portable configurations for application in a variety of monitoring and detection applications. A scanning double-beam interferometer, particularly a Michelson interferometer, in which the length of at least one of the optical paths (or arms) of the interferometer is selectively adjustable by use of an actuator in which rotational displacement of a rotatable element is converted into linear displacement of at least one reflective surface which forms an end of an optical path of the interferometer is employed to obtain interferograms of electromagnetic radiation attenuated, emitted, scattered or reflected from a sample. The length of the optical path that is adjusted is determined using an optical detection scheme, particularly where marking on the rotatable element are detected to determine linear displacement of the reflective surface.
Abstract:
A method for the wavelength calibration of echelle spectra, in which the wavelengths are distributed across number of orders is characterised by the steps: recording of a line-rich reference spectrum with known wavelengths for a number of the lines, determination of the position of a number of peaks of the reference spectrum in the recorded spectrum, selection of at least two first lines of known order, position and wavelength, determination of a wavelength scale for the order in which the known lines lie, by means of a fit function γm(x), determination of a provisional wavelength scale γ?m 1(x) for at least one neighboring order m 1, by means of addition/subtraction of a wavelength difference γFSR which corresponds to a free spectral region, according to γm 1 ?(x)=γm(x)γFSR with γFSR=γm(x)/m, determination of the wavelengths of lines in said neighboring order m 1, by means of the provisional wavelength scale γ 1(x), replacement of the provisional wavelength of at least two lines by the reference wavelength for said lines as obtained in step (a) and repeat of steps (d) to (g) for at least one further neighboring order.
Abstract:
An optical spectrum analyzer is implemented with a detector combined with a tunable filter mounted on a stage capable of 360-degree rotation at a constant velocity. Because of the constant rate of angular change, different portions of the input spectrum are detected at each increment of time as a function of filter position, which can be easily measured with an encoder for synchronization purposes. The unidirectional motion of the mirror permits operation at very high speeds with great mechanical reliability. The same improvements may be obtained using a diffraction grating or a prism, in which case the detector or an intervening mirror may be rotated instead of the grating or prism.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, and the power source in a hand-held device.