Abstract:
In one example, a device for decoding video data includes a video decoder configured to decode a value representative of a difference between most significant bits (MSBs) of a reference picture order count (POC) value and MSBs of a long-term reference picture (LTRP) POC value, wherein the reference POC value corresponds to a picture for which data must have been received in order to properly decode a current picture, determine the MSBs of the LTRP POC value based on the decoded value and the reference POC value, and decode at least a portion of the current picture relative to the LTRP based at least in part on the LTRP POC value. The picture for which data must have been received in order to properly decode a current picture may correspond to the current picture itself or a most recent random access point (RAP) picture.
Abstract:
Systems, methods, and devices for coding multilayer video data are disclosed that may include encoding, decoding, transmitting, or receiving multilayer video data. The systems, methods, and devices may receive or transmit a non-entropy coded representation format within a video parameter set (VPS). The systems, methods, and devices may code (encode or decode) video data based on the non-entropy coded representation format within the VPS, wherein the representation format includes one or more of chroma format, whether different color planes are separately coded, picture width, picture height, luma bit depth, and chroma bit depth.
Abstract:
A client device includes one or more processors configured to determine, from a manifest file, a plurality of types of segments included in a representation of media content, one or more functions provided by each of the types of segments, and positions of segments conforming to each of the types of segments in the representation, wherein at least one of the types of segments provides a point at which to begin retrieving data from the representation, determine, from the manifest file, a segment of the representation conforming to the type that provides the point at which to begin retrieving data from the representation, and retrieve the determined segment from the representation.
Abstract:
An apparatus for decoding video information according to certain aspects includes a memory unit and a processor operationally coupled to the memory unit. The memory unit is configured to store at least one reference picture list of an enhancement layer, the at least one reference picture list comprising residual prediction reference picture information. The processor is configured to: decode signaled information about residual prediction reference picture generation; generate a residual prediction reference picture based on an enhancement layer reference picture and the decoded signaled information such that the generated residual prediction reference picture has the same motion field and the same picture order count (POC) as the enhancement layer reference picture from which it is generated; and store the generated residual prediction reference picture in the at least one reference picture list of the enhancement layer.
Abstract:
A video coder may, in some cases, signal whether one or more initial reference picture lists are to be modified. When an initial list is to be modified, the video coder can signal information indicating a starting position in the initial reference picture list. When the starting position signaled by the video coder is less than a number of pictures included in the initial reference picture list, then the video coder signals the number of pictures to be inserted into the initial reference picture list, and a reference picture source from which a picture can be retrieved to insert into the initial reference picture list to construct a modified reference picture list.
Abstract:
A video encoder signals, in an encoded video bitstream, a video parameter set (VPS) that includes a plurality of Hypothetical Reference Decoder (HRD) parameter syntax structures that each include HRD parameters. For each respective HRD parameter syntax structure in the plurality of HRD parameter syntax structures, the VPS further includes a syntax element indicating whether the HRD parameters of the respective HRD parameter syntax structure include a common set of HRD parameters in addition to a set of sub-layer-specific HRD parameter information specific to a particular sub-layer of the encoded video bitstream. The common set of HRD parameters is common to all sub-layers of the encoded video bitstream. A video decoder or other device decodes, from the encoded video bitstream, the VPS and performs an operation using the HRD parameters of at least one of the HRD parameter syntax structures.
Abstract:
As one example, techniques for decoding video data include receiving a bitstream that includes one or more pictures of a coded video sequence (CVS), decoding a first picture according to a decoding order, wherein the first picture is a random access point (RAP) picture that is not an instantaneous decoding refresh (IDR) picture, and decoding at least one other picture following the first picture according to the decoding order based on the decoded first picture. As another example, techniques for encoding video data include generating a bitstream that includes one or more pictures of a CVS, wherein a first picture according to the decoding order is a RAP picture that is not an IDR picture, and avoiding including at least one other picture, other than the first picture, that corresponds to a leading picture associated with the first picture, in the bitstream.
Abstract:
A device for decoding video data includes a memory configured to store at least a portion of a bitstream of multi-layer video data and one or more processors configured to receive a first access unit delimiter (AUD) network abstraction layer (NAL) unit for a first access unit, wherein a layer identifier for the first AUD NAL unit is equal to zero; receive a second AUD NAL unit for the first access unit, wherein a layer identifier for the second AUD NAL unit is greater than zero; and decode the first access unit.
Abstract:
A device for processing video data includes a memory configured to store at least a portion of a multi-layer bitstream of video data; and one or more processors configured to receive the portion of the multi-layer bitstream, the multi-layer bitstream comprising a plurality of layers, the plurality of layers comprising a non-independently decodable non-base layer (non-INBL) and an independently decodable non-base layer (INBL); receive a video parameter set (VPS) associated with the coded video data, the VPS comprising first representation format parameters; receive a sequence parameter set (SPS) associated with the INBL, the SPS comprising second representation format parameters; process the non-INBL based on the first representation format parameters; and process the INBL based on the second representation format parameters.
Abstract:
Systems and methods for coding video data are disclosed. The method can include determining a reference picture set (RPS) for a current picture based on one or more reference pictures. The method can also include determining a picture order count (POC) value of each reference picture of the RPS and identifying at least one of a number of long-term reference pictures and a number of short-term reference pictures within the RPS. The method can also include applying constraints to the number of long-term pictures and the number of short-term pictures in the RPS, the constraints being based on the POC value and a maximum decoded picture buffer size minus one, if a video sequence parameter (VPS) extension is in use. The method can include generating at least one syntax element identifying the RPS based on the constraints and encoding the current picture based on the at least one syntax element.