Abstract:
An ion implantation apparatus and method are disclosed for reducing contamination of doubly-charged ions by singly-charged ions. A liner, with a grooved or smooth surface, formed of beryllium or graphite reduces secondary electron scattering into the ion beam. Solid red phosphorus reduces the operating vacuum thereby reducing contamination.
Abstract:
An arrangement for particle beam measurement utilizes, an objective for the imaging of primary probe particles on a specimen and a spectrometer for the detection of secondary particles. The arrangement also utilizes the superposition of the electric field of the spectrometer with the electric field of the objective lens to render possible an effective increase of the probe current and/or an improved potential resolution. A portion of the field of the objective is provided for the focusing of the secondary particles onto an electrode for determining energy selection.
Abstract:
An apparatus for the potential measuring technique has an objective lens for focusing primary electrons onto an object, and also has a spectrometer for the energy selection of secondary electrons to provide an improvement of the quantitative potential measurement on printed conductors of integrated microelectronic components with improved local resolution, higher probe current, and improved potential resolution. The objective lens is a magnetic lens in which the lens field lies largely outside the lens body, and the spectrometer is an electrostatic retarding field spectrometer arranged in the magnetic field of the lens.
Abstract:
An improved electrostatic opposing field spectrometer of the type which may be utilized for undertaking measurements with an electron beam probe has an extraction electrode and an opposing field electrode and two spherical networks for generating a spherically symmetrical opposing field, the lower spherical network being at substantially the same potential as the extraction electrode and the upper spherical network being at a potential in the range of approximately 15 through -15 volts. The spherical network permit transmission of a large solid angle distribution of the secondary electrons emitted at the test point on the surface of a specimen. The centers of both spherical networks may be coincident at an imaginary source point.
Abstract:
An element for the retarding field analysis of the energy distribution of electrons is constructed from three or more similar planar grids superimposed in parallel planes. The element is arranged for rigid location with respect to the beam axis of a scanning electron microscope so that the beam passes through aligned apertures in the grids and so that secondary electrons produced from a specimen are collected by the element. In use in the electron microscope the potential of the retarding grid is automatically maintained at a level such that the ratio of electron collection at high and low energies is held constant. The potential so determined can be related to the potential of the surface at the point of origin of the electrons.
Abstract:
A scanning corpuscular-beam transmission-type microscope including an energy analyzer below the specimen and a first deflection system disposed between the beam source and the specimen. A second deflection system is disposed between the specimen and the energy analyzer for redirecting the beam to the input aperture of the energy analyzer and is rotated with respect to the first deflection system to compensate for rotation of the specimen image by the objective lens of the microscope.
Abstract:
A Wien filter, used as an energy analyzer in an electron microscope, includes a four-pole lens which enlarges the dispersion of electrons in one direction. By addition of six-pole lenses and an additional four-pole lens, correction can be made for opening errors in the electron beam to be analyzed.
Abstract:
A method and apparatus for quantitatively measuring potential on surfaces with submicron spatial resolution employs conventional scanning electron microscope and electron energy analyzer to obtain potential measurements and, in effect, a map of potential at different points on a surface such as a semiconductor or integrated circuit device. A micrograph of the surface to be analyzed is employed to locate points at which potential is to be measured. An Auger electron spectrum including several Auger peaks characteristic of secondary electrons emitted from a point of known potential on which the electron beam of the microscope impinges is first obtained. Then either the potential on the surface at that point is changed or the electron beam is moved to a second point and a second Auger electron spectrum is obtained. The magnitude of the shift in corresponding Auger peaks from the first spectrum to the second spectrum constitutes a direct quantitative measure of the potential of the second point with respect to the potential of the first point.
Abstract:
Apparatus for analyzing the energy of an electron beam in an electron microscope includes a cylindrical lens of the magnetic field type inserted additionally or in place of a conventional intermediate lens, and a slit member cooperating with said cylindrical lens, said cylindrical lens being excited under preselected conditions.
Abstract:
Charged-particle beam (CPB) optical systems can include a beam acceptance aperture plate defining a first acceptance aperture and at least one second acceptance aperture, situated with respect to a CPB source so that a first CPB is transmitted by the first acceptance aperture and a second CPB is transmitted by a second acceptance aperture. A CPB lens is situated to receive the first and second CPBs from the beam acceptance aperture plate and direct the first and second CPBs towards a filter aperture plate to transmit selected spectral portion of the second CPB. The selected spectral component of the first CPB can be selectively directed to a workpiece by a beam steering deflector along the same axis. In some examples, the first and second CPBs have different beam currents and only one is directed to a workpiece.