System and Method for Providing a Compositional Measurement of a Mixture Having Entrained Gas
    21.
    发明申请
    System and Method for Providing a Compositional Measurement of a Mixture Having Entrained Gas 有权
    用于提供具有夹带气体的混合物的组成测量的系统和方法

    公开(公告)号:US20090241672A1

    公开(公告)日:2009-10-01

    申请号:US12055566

    申请日:2008-03-26

    申请人: Daniel L. Gysling

    发明人: Daniel L. Gysling

    IPC分类号: G01H5/00 G01F1/20 G01L11/06

    摘要: A method and apparatus for determining at least one characteristic of a fluid flowing within a pipe is provided. The fluid flow may include one or more liquid component bodies and one or more gas component bodies, which bodies occupy a substantial cross-sectional area of the pipe when passing a location in the pipe. The method includes, and the apparatus includes elements operable to perform, the steps of: 1) transmitting a signal into the fluid flow at the location within the pipe, and receiving the signal after it has traversed at least a portion of the fluid flow; 2) determining a time of flight of the signal traversing the fluid flow; 3) determining the presence of a liquid component body at the location in the pipe, using the determined time of flight; and 4) determining at least one characteristic of the fluid using fluid data generated if the liquid component body is present at the location.

    摘要翻译: 提供一种用于确定在管内流动的流体的至少一种特性的方法和装置。 流体流动可以包括一个或多个液体组分体和一个或多个气体组分体,当通过管中的位置时,这些主体占据管的实质横截面积。 该方法包括,并且该装置包括可操作以执行以下步骤的元件:1)将信号发送到管道内的位置处的流体流中,并且在其已经穿过至少一部分流体流之后接收信号; 2)确定穿过流体流的信号的飞行时间; 3)使用确定的飞行时间确定管道位置处液体组分体的存在; 以及4)如果液体组分主体存在于该位置,则使用产生的流体数据来确定流体的至少一个特性。

    Sensing Device
    22.
    发明申请
    Sensing Device 有权
    感应装置

    公开(公告)号:US20080314152A1

    公开(公告)日:2008-12-25

    申请号:US11632958

    申请日:2006-08-10

    申请人: Toshihiko Ouchi

    发明人: Toshihiko Ouchi

    IPC分类号: G01H5/00

    摘要: The present invention provides a sensing device for obtaining information of a test sample using an electromagnetic wave including a frequency region within a frequency region of 30 GHz to 30 THz, the sensing device comprising an electromagnetic wave transmitting portion including a plurality of transmission portions (4a, 4b) for propagating electromagnetic waves and detection portions (3a, 3c) for receiving and detecting the electromagnetic waves from the plurality of transmission portions (4a, 4b), in which at least one of the plurality of transmission portions (4a, 4b) is constructed such that the test sample (5, 6) can be placed in a portion affected by an electromagnetic wave propagating therethrough.

    摘要翻译: 本发明提供了一种用于使用包括在30GHz至30Hz的频率区域内的频率区域的电磁波获取测试样本的信息的感测装置,所述感测装置包括电磁波传输部分,该电磁波传播部分包括多个传输部分(4a ,4b)和用于接收和检测来自多个传输部分(4a,4b)的电磁波的检测部分(3a,3c),其中多个传输部分(4a,4b)中的至少一个传播部分 被构造成使得测试样品(5,6)可以被放置在受传播通过其的电磁波影响的部分中。

    SYSTEMS AND METHODS FOR PREDICTING ACOUSTIC SIGNATURES
    23.
    发明申请
    SYSTEMS AND METHODS FOR PREDICTING ACOUSTIC SIGNATURES 有权
    用于预测声学信号的系统和方法

    公开(公告)号:US20080228413A1

    公开(公告)日:2008-09-18

    申请号:US11684923

    申请日:2007-03-12

    申请人: Anthony R. Pilon

    发明人: Anthony R. Pilon

    IPC分类号: G06F19/00 G01H5/00

    CPC分类号: G01H17/00

    摘要: A system for determining an acoustic signature of a device is disclosed that includes a computer processor operable to determine strength and location of shock wave sound signals based on propagation of sound waves generated by the device. The strength and location of the shock wave signals are modified due to dissipation and dispersion effects in a non-uniform atmosphere. The shock wave signals are separated into even and odd numbered signals, and oscillations in the signals are smoothed by averaging even and odd numbered shock signals.

    摘要翻译: 公开了一种用于确定设备的声学签名的系统,其包括计算机处理器,其可操作以基于由所述设备产生的声波的传播来确定冲击波声音信号的强度和位置。 冲击波信号的强度和位置由于在不均匀气氛中的耗散和色散效应而被修改。 冲击波信号被分成偶数和奇数信号,通过平均偶数和奇数的震动信号来平滑信号中的振荡。

    Ultrasonic sensor for use in automotive vehicle
    24.
    发明申请
    Ultrasonic sensor for use in automotive vehicle 失效
    超声波传感器用于汽车

    公开(公告)号:US20080087090A1

    公开(公告)日:2008-04-17

    申请号:US11902382

    申请日:2007-09-21

    IPC分类号: G01H5/00

    CPC分类号: G01H11/06 G01H11/08 G01S7/521

    摘要: An ultrasonic sensor for detecting a position and/or a shape of an object located around an automotive vehicle is mounted on a structure of the vehicle such as a bumper. The ultrasonic sensor includes a receiving member for receiving ultrasonic waves reflected on the object to be detected and receiving element having plural vibrating portions. The receiving member is sectioned by intercepting slits into plural receiving regions each corresponding to each vibrating portion. The intercepting slit eliminates or suppresses crosstalk between neighboring receiving regions, and thereby reducing detection noises due to the crosstalk and improving detection sensitivity of the ultrasonic sensor. The shape of the intercepting slit is made to satisfy the formula: 0.35≦L/T≦0.60, where L is a depth of the slit and T is a thickness of the receiving member. In this manner, the crosstalk resulting in detection noises is sufficiently suppressed.

    摘要翻译: 用于检测位于机动车辆周围的物体的位置和/或形状的超声波传感器安装在诸如保险杠的车辆的结构上。 超声波传感器包括用于接收在待检测物体上反射的超声波的接收部件和具有多个振动部的接收元件。 接收部件通过将狭缝截取成各自对应于每个振动部分的多个接收区域来进行分割。 拦截狭缝消除或抑制相邻接收区域之间的串扰,从而减少由于串扰引起的检测噪声并提高超声波传感器的检测灵敏度。 截取狭缝的形状为:0.35 <= L / T <= 0.60,其中L是狭缝的深度,T是接收部件的厚度。 以这种方式,可以充分抑制导致检测噪声的串扰。

    ULTRASONIC MATERIAL MONITOR FOR DETERMINING A CHARACTERISTIC OF THE MATERIAL
    25.
    发明申请
    ULTRASONIC MATERIAL MONITOR FOR DETERMINING A CHARACTERISTIC OF THE MATERIAL 有权
    超声材料监测器用于确定材料的特性

    公开(公告)号:US20080022773A1

    公开(公告)日:2008-01-31

    申请号:US11782229

    申请日:2007-07-24

    IPC分类号: G01N29/07 G01H5/00 G01L1/00

    摘要: A material characteristic measurement approach measures an internal state of a material by measuring the nonlinear shift in velocity induced by different acoustic energies. The technology for implementing this measurement approach is relatively simple, robust, permits portable measurements, does not require that an unloaded initial condition of the material be measured or otherwise known in order to determine a characteristic of the material, can be applied using one or more transducers, and does not require physical contact with the material. Some example material characteristics include a residual stress existing without any external mechanical force applied, applied stress, a fatigue state, age, an interference-fit fastener stress, bio-activity, a nanostructure mixture of the material, a heat treatment of the material, a cross-linking of polymers in the material, a bio-growth organization of the material, a clotting factor of blood or blood-like material, a cure of an adhesive or sealant material, or the microstructure of the material.

    摘要翻译: 材料特性测量方法通过测量由不同声能引起的速度的非线性偏移来测量材料的内部状态。 用于实施该测量方法的技术相对简单,稳健,允许便携式测量,不要求材料的未加载初始条件被测量或以其他方式被知道以便确定材料的特性,可以使用一个或多个 传感器,并且不需要与材料的物理接触。 一些示例性材料特征包括存在没有施加任何外部机械力的残余应力,施加的应力,疲劳状态,年龄,干涉配合紧固件应力,生物活性,材料的纳米结构混合物,材料的热处理, 材料中聚合物的交联,材料的生物生长组织,血液或血液样物质的凝血因子,粘合剂或密封剂材料的固化或材料的微观结构。

    Non-destructive testing of pipes
    26.
    发明申请

    公开(公告)号:US20060283251A1

    公开(公告)日:2006-12-21

    申请号:US11156573

    申请日:2005-06-21

    IPC分类号: G01H5/00

    摘要: To perform a non-destructive condition assessment of a pipe carrying a fluid, an actual value representative of the propagation velocity of an acoustic disturbance propagating between two longitudinally separated points on the pipe is determined. A corresponding predicted value for the propagation velocity is computed as a function of at least one wall thickness parameter of the pipe by using a theoretical model for the propagation of acoustic waves in the pipe that assumes said pipe has a finite wall thickness with a predetermined circumferential thickness profile. The wall thickness parameter is then computed by matching the actual value with the predicted value, for example, by substituting the actual value in a formula predicting the theoretical value.

    Ultrasonic imaging device
    27.
    发明授权
    Ultrasonic imaging device 失效
    超声波成像装置

    公开(公告)号:US06958041B2

    公开(公告)日:2005-10-25

    申请号:US10221132

    申请日:2001-03-12

    摘要: An ultrasonic imaging arrangement performs tentative scanning of ultrasound to the inside of a living body with delay time corresponding to average sonic velocity, calculates delay time error in a delay time error detecting circuit by using received signals from each channel to which delay control has been performed in a digital delay circuit, compares in a delay time comparing unit the calculated data with a plurality of delay time error data corresponding to various sonic velocities using sound velocity as the parameter stored before hand in a sound velocity-derived delay time error storing unit, selects among those sonic velocities the one matching the delay time error data with a sonic velocity selecting unit, and calculates the sonic velocity within the living body. The calculated sonic velocity is fed back to CPU, and the delay data on the delay applied in the ultrasonic scanning is provided to a delay circuit.

    摘要翻译: 一种超声波成像装置,对具有对应于平均声速的延迟时间,对生物体的内部进行超声波的暂时扫描,通过使用已经进行了延迟控制的各个通道的接收信号来计算延迟时间误差检测电路的延迟时间误差 在数字延迟电路中,在延迟时间比较单元中,使用声速作为在速度导出的延迟时间误差存储单元中存储的参数之前的参数,将计算出的数据与对应于各种声速的多个延迟时间误差数据进行比较, 在这些声速之中选择与声速选择单元匹配延迟时间误差数据的声速,并计算生物体内的声速。 将计算出的声速反馈给CPU,并将超声波扫描中所用延迟的延迟数据提供给延迟电路。

    Electronic intelligent indenter
    28.
    发明授权
    Electronic intelligent indenter 失效
    电子智能压头

    公开(公告)号:US06904806B2

    公开(公告)日:2005-06-14

    申请号:US10197142

    申请日:2002-07-18

    申请人: Roger W. Pryor

    发明人: Roger W. Pryor

    摘要: An electronic intelligent indenter system that determines the hardness and the case depth of a hardened portion of a test part in a non-destructive manner. The system employs an electronic indenter tool having a tip. To determine the depth of the case hardened portion of the part, the indenter tip is placed in contact with the surface of the part, and a laser emits a laser beam pulse that impinges the surface of the part proximate the tip. The laser beam generates ultrasonic waves that propagate into the part. The ultrasonic waves reflect off of a transition between the case hardened portion and an unhardened portion of the part. A detector in the indenter system detects the reflected ultrasonic waves. The ultrasonic waves cause the detector to generate a signal identifying the time between when the laser pulse is emitted and when the reflected wave is received. The signal is analyzed by a controller that compares the signal to a standard of calibration for a reflected wave from a hardened portion of a calibration part having a greater depth than the test part.

    摘要翻译: 一种电子智能压头系统,以非破坏性的方式确定测试部件的硬化部分的硬度和壳体深度。 该系统采用具有尖端的电子压头工具。 为了确定部件的壳体硬化部分的深度,压头尖端被放置成与部件的表面接触,并且激光器发射激光束脉冲,其将部件的表面撞击靠近尖端。 激光束产生传播到该部分的超声波。 超声波从外壳硬化部分和部件的未硬化部分之间的过渡反射。 压头系统中的检测器检测反射的超声波。 超声波使得检测器产生标识激光脉冲发射时和接收反射波之间的时间的信号。 信号由控制器分析,该控制器将信号与来自具有比测试部件更深的校准部件的硬化部分的反射波的校准标准进行比较。

    Ultrasonic-wave propagation-time measuring method and gas concentration sensor
    29.
    发明授权
    Ultrasonic-wave propagation-time measuring method and gas concentration sensor 失效
    超声波传播时间测量方法和气体浓度传感器

    公开(公告)号:US06886412B2

    公开(公告)日:2005-05-03

    申请号:US10076423

    申请日:2002-02-19

    摘要: An ultrasonic-wave propagation-time measuring method and gas concentration sensor are disclosed in which a reception wave which has been transmitted and received by an ultrasonic element 5 is subjected to full-wave rectification in order to obtain a full-wave-rectified wave, which is then integrated by an integration circuit 37 to obtain an integral value. A peak value of the integral value is held by a peak-hold circuit 39. As to detection of gas concentration, a threshold-level calculation section 21e sets a reference value on the basis of the peak value, and a point in time when the amplitude of a reception wave having undergone full-wave rectification is judged by a comparator 43 to have reached the reference value is regarded as an arrival time. Subsequently, a gas concentration is determined on the basis of a period between the emission time and the arrival time.

    摘要翻译: 公开了一种超声波传播时间测量方法和气体浓度传感器,其中由超声波元件5发送和接收的接收波被进行全波整流,以获得全波整流波, 然后将其由积分电路37积分以获得积分值。 积分值的峰值由峰值保持电路39保持。 关于气体浓度的检测,阈值电平计算部21e基于峰值设定基准值,并且通过比较器判定经过全波整流的接收波的振幅的时间点 43已达到参考值被视为到达时间。 随后,基于发射时间和到达时间之间的周期来确定气体浓度。