Abstract:
The present invention provides a process for changing the given mean molecular weight Mn in the continuous preparation of polytetrahydrofuran or tetrahydrofuran copolymers, the mono- or diesters of polytetrahydrofuran or of tetrahydrofuran copolymers by polymerizing tetrahydrofuran in the presence of a telogen and/or of a comonomer over an acidic catalyst, wherein a) the molar ratio of telogen to tetrahydrofuran or to tetrahydrofuran and comonomer is changed, b) then the mean molecular weight of at least one sample is determined, c) until the mean molecular weight thus determined differs from the molecular weight to be achieved by the change, the already formed polytetrahydrofuran or the tetrahydrofuran copolymers, the mono- or diesters of polytetrahydrofuran or tetrahydrofuran copolymer is at least partly depolymerized over an acidic catalyst and d) the tetrahydrofuran recovered by depolymerization is recycled at least partly into the polymerization.
Abstract:
A poly(2,6-dimethyl-1,4-phenylene ether) having a high molecular weight and a reduced content of low molecular weight species can be prepared by a method that includes specific conditions for the oxidative polymerization, chelation, and isolation steps. The poly(2,6-dimethyl-1,4-phenylene ether) is particularly useful for the fabrication of fluid separation membranes.
Abstract:
A poly(2,6-dimethyl-1,4-phenylene ether) prepared using a morpholine-containing polymerization catalyst has a monomodal molecular weight distribution with a reduced content of very high molecular weight species. It also exhibits increased morpholine incorporation in the high molecular weight fraction. Compared to commercially available poly(2,6-dimethyl-1,4-phenylene ether) prepared using a di-n-butylamine-containing polymerization catalyst, the poly(2,6-dimethyl-1,4-phenylene ether) of the invention exhibits reduced odor. Compared to other poly(2,6-dimethyl-1,4-phenylene ether) prepared using a morpholine-containing polymerization catalyst, the poly(2,6-dimethyl-1,4-phenylene ether) of the invention exhibits improved molecular weight build during compounding and improved compatibilization with polyamides.
Abstract:
A method of separating a polymer-solvent mixture is described wherein a polymer-solvent mixture is heated prior to its introduction into an extruder comprising an upstream vent and/or a side feeder vent to allow flash evaporation of the solvent, and downstream vents for removal of remaining solvent. The one-step method is highly efficient having very high throughput rates while at the same time providing a polymer product containing low levels of residual solvent.
Abstract:
A method is disclosed to purify a polymeric material by filtering a melt comprising poly(arylene ether) and poly(alkenyl aromatic) through a melt filtration system. The method provides a filtered polymeric composition having reduced levels of particulate impurities. The filtered polymeric composition prepared is suitable for use in data storage media applications.
Abstract:
Volatile substances in polyphenylene ether or polyphenylene ether/polystyrene compositions are substantially reduced by extruding the resins in a single pass using a plurality of stages comprising water injection and vacuum venting.
Abstract:
This invention pertains to perfluoropolyethers and perhalogenated chlorofluoroether polymers that can be prepared by fluorinating polymers made by the polymerization of acetals, ketals, polyacetals, polyketals and orthoesters with elemental fluorine.
Abstract:
Polymers, such as polyphenylene ethers, are isolated from solution in an extruder by addition of at least one non-solvent. Optional steps include removal of volatiles through vents or ports on the extruder and employment of an auxiliary non-solvent. Additional operations, such as blending with further polymers, fractionation of low molecular weight molecules and functionalization by chemical reaction, may also be performed in the extruder.
Abstract:
Volatile substances in polyphenylene ether or polyphenylene ether/polystyrene compositions are substantially reduced by extruding the resins in a single pass using a plurality of stages including water injection and vacuum venting.
Abstract:
Method for recovering an aromatic polyether as a solid product from a solution thereof in an organic solvent by precipitating with a fluorohydrocarbon which may also contain chlorine or bromine and which boils at -30.degree. C. to +100.degree. C.