Abstract:
A temperature-compensated piezoelectric oscillator as an oscillator includes a piezoelectric resonator incorporating a resonator element, an electronic component (IC) as a circuit element having a function of driving the resonator element and a thermosensor, and a wiring board provided with a conductor film, and the piezoelectric resonator element and the electronic component (IC) are disposed side by side in an area where the conductor film is disposed.
Abstract:
Provided are a constant voltage circuit configured to, when a power supply voltage is low, detect a leakage current to output a stable voltage at a power supply voltage level, and a crystal oscillation circuit using the constant voltage circuit. The constant voltage circuit includes a leakage current detection circuit including a PMOS transistor for monitoring a leakage current, which has a gate and a source being grounded. When a leakage current is detected, even with a constant voltage power supply, a voltage sufficient for turning on an output transistor of the constant voltage circuit can be applied to a gate of the output transistor.
Abstract:
An atomic oscillator includes an atomic cell in which alkali metal atoms are encapsulated, a light source section configured to receive the supply of a bias and emit light including a resonance light pair for causing the alkali metal atoms to resonate, a temperature adjusting element configured to adjust the temperature of the light source section, a bias detecting section configured to detect information concerning the bias, and a light-source-temperature control section configured to control the temperature adjusting element using the information detected by the bias detecting section.
Abstract:
A semiconductor circuit device includes an oscillation circuit, an output circuit that outputs a signal output from the oscillation circuit, a temperature sensing element, a characteristic adjustment circuit that adjusts characteristics of the oscillation circuit on the basis of a signal output from the temperature sensing element, a first wiring via which power is supplied to the output circuit, and a second wiring via which a reference voltage is supplied to the output circuit in which at least one of the first wiring and the second wiring overlaps the temperature sensing element in a plan view.
Abstract:
Provided is a clock generator that includes a comparator in which characteristics of two input signals vary over time. A voltage controller, having a resistor and at least one constant current source, generates a direct current (DC) voltage proportional to an output current of the constant current source and a resistance value of the resistor. The comparator compares a ramp voltage generated by the voltage controller with the DC voltage.
Abstract:
A crystal oscillator having a plurality of quartz crystals that are manufactured so that the directional orientation of the acceleration sensitivity vector is essentially the same for each crystal. This enables convenient mounting of the crystals to a circuit assembly with consistent alignment of the acceleration vectors. The crystals are aligned with the acceleration vectors in an essentially anti-parallel relationship and can be coupled to the oscillator circuit in either a series or parallel arrangement. Mounting the crystals in this manner substantially cancels the acceleration sensitivity of the composite resonator and oscillator, rendering it less sensitive to vibrational forces and shock events.
Abstract:
An integrated circuit device includes a multi-port piezoelectric-on-semiconductor microelectromechanical resonator, which is configured to support independent and concurrent piezoelectric transduction of multiple resonance modes. The resonator includes a semiconductor resonator body (e.g., Si body) suspended opposite an underlying recess in a substrate. Opposite ends of the semiconductor resonator body are anchored to the substrate. The resonator body may be formed so that a plan layout view of a portion of the semiconductor resonator body is dumbbell-shaped to thereby support acoustic energy trapping of multiple high-Q resonance modes.
Abstract:
Systems, methods, and assemblies to provide clock signals to electrical components of downhole tools are provided. In one example, an oscillator assembly may include a silicon-based oscillator having a variable capacitor circuit. The silicon-based oscillator may provide an output signal at a frequency within a range of frequencies. The oscillator assembly may also include control circuitry electrically coupled to the silicon-based oscillator. Moreover, the control circuitry may include a temperature input that receives a temperature corresponding to the silicon-based oscillator. The control circuitry may also include a control signal output electrically coupled to the silicon-based oscillator. The control signal output may be used to change a capacitance of the variable capacitor circuit based on the temperature received by the temperature input to maintain the output signal of the silicon-based oscillator within the range of frequencies.
Abstract:
New and highly stable oscillators are disclosed. Such an oscillator may include a first capacitor electrically connected to a first charging switch and a first discharging switch, a second capacitor electrically connected to a second charging switch and a second discharging switch, a first chopping circuit having a first input electrically connected to the first capacitor and a second input electrically connected to a reference voltage, a second chopping circuit having a first input electrically connected to the second capacitor and a second input electrically connected to the reference voltage, a first comparator having a first input electrically connected to a first and second output of the first chopping circuit, a second comparator having a first input electrically connected to a first and second output of the second chopping circuit, and control circuitry having a first input electrically coupled to an output of the first comparator and a second input electrically connected to an output of the second comparator.
Abstract:
A temperature-compensated piezoelectric oscillator as an oscillator includes a piezoelectric resonator incorporating a resonator element, an electronic component (IC) as a circuit element having a function of driving the resonator element and a thermosensor, and a wiring board provided with a conductor film, and the piezoelectric resonator element and the electronic component (IC) are disposed side by side in an area where the conductor film is disposed.