Abstract:
Technologies are generally described for quadrature-based injection-locking of ring oscillators. In some examples, an external signal may be injected into a ring oscillator. Phase signals may be measured from within the ring oscillator and used to determine a mean quadrature error (MQE) that characterizes the difference in frequency between the external signal and the ring oscillator's natural frequency. A control signal may then be generated from the MQE and used to adjust the ring oscillator natural frequency to reduce the difference between the ring oscillator natural frequency and the external signal.
Abstract:
An oscillator includes an input terminal, an oscillation circuit section configured to cause a resonator to resonate to output an oscillator signal, a digital input section to which a signal for controlling an oscillation frequency of the oscillation circuit section is input via the input terminal, and a first bias circuit section including a constant current source configured to supply a reference current to the digital input section.
Abstract:
An oscillation circuit includes a temperature compensating section to which electric power is supplied from a main power supply and a backup power supply, an oscillating section, a function of which is compensated by a signal from the temperature compensating section, and a switch and a power-supply monitoring circuit configured to select, when the temperature compensating section is not operating, at least one of the main power supply and the backup power supply and control connection to the temperature compensating section.
Abstract:
According to one embodiment, a phase locked loop (PLL) circuit includes an application unit, a correlator, an integrator and a power supply noise canceller. The application unit applies the test signal to a power supply voltage. The correlator extracts a frequency error signal as a monitor signal and calculates a correlation value for the test signal and the monitor signal to generate a correlation signal. The integrator integrates the correlation signal to generate an integral signal. The power supply noise canceller provides a cancellation gain corresponding to the integral signal to the power supply voltage to which the test signal is applied, to generate a control signal.
Abstract:
High-speed CMOS ring voltage controlled oscillators with low supply sensitivity have been disclosed. According to one embodiment, a CML ring oscillator comprises a CML negative impedance compensation circuit comprising two cross coupled transistors and a resistor connected to the two transistors for resistive biasing and a CML interpolating delay cell connected in parallel with the CML negative impedance compensation. An impedance change of the CML negative impedance compensation due to supply variation counteracts an impedance change of the CML interpolating delay cell.
Abstract:
A method for manufacturing oscillators of a plurality of types including a first oscillator and a second oscillator, the method includes: manufacturing the first oscillator, the manufacturing the first oscillator including a first-oscillator first step of mounting, to a first container, a first resonator element and a first circuit element configured to oscillate the first resonator element to generate a first oscillation signal, and a first-oscillator second step of mounting, to the first container, a second resonator element whose oscillation frequency is controlled based on the first oscillation signal; and manufacturing the second oscillator, the manufacturing the second oscillator including a second-oscillator first step of mounting a third resonator element and a second circuit element to a second container of the same type as the first container, the third resonator element being of the same type as the first resonator element and the second circuit element being of the same type as the first circuit element and being configured to oscillate the third resonator element to generate a second oscillation signal, and a second-oscillator second step of mounting, to the second container, a fourth resonator element whose oscillation frequency is controlled based on the second oscillation signal and whose frequency is different from the frequency of the second resonator element.
Abstract:
To prevent an undesired operating mode of voltage-controlled oscillation (VCO) circuitry from dominating a desired operating mode (e.g., an in-phase operating mode or an out-of-phase operating mode), a supply reset and ramp pulse may be provided to the VCO circuitry when switching to a new mode, such that supply voltage to the VCO circuitry is reset (e.g., set to 0 V or another reference voltage), and gradually increased or ramped up back to a steady-state voltage (e.g., used to maintain a mode) within a time duration. Additionally or alternatively, a switch control bootstrap pulse may be provided to the VCO circuitry that is bootstrapped to (e.g., applied instantaneously or concurrently with) switching the VCO circuitry to the new mode. After a time duration, the VCO circuitry may switch back to a steady-state voltage (e.g., used to maintain the new mode).
Abstract:
A reference oscillator arrangement is provided for a communication apparatus capable of communicating according to a plurality of transport formats. The reference oscillator arrangement comprises a reference oscillator controller; a resonator core comprising a reference resonator and a driving circuit for the reference resonator, wherein the resonator core is arranged to provide an oscillating signal at a frequency of the reference resonator; and a reference oscillator buffer arrangement, connected to the resonator core, comprising an active circuit arranged to provide a reference oscillator output based on the oscillating signal. The reference oscillator controller is arranged to receive information about an applied transport format and control the driving circuit and/or the active circuit based on the information about the applied transport format. An oscillator arrangement, a communication device, methods therefor and a computer program are also disclosed.
Abstract:
Voltage-controlled oscillation is described. In an apparatus therefor, an inductor has a tap and has or is coupled to a positive-side output node and a negative side output node. The tap is coupled to receive a first current. A coarse grain capacitor array is coupled to the positive-side output node and the negative side output node and is coupled to respectively receive select signals. A varactor is coupled to the positive-side output node and the negative side output node and is coupled to receive a control voltage. The varactor includes MuGFETs. A transconductance cell is coupled to the positive-side output node and the negative side output node, and the transconductance cell has a common node. A frequency scaled resistor network is coupled to the common node and is coupled to receive the select signals for a resistance for a path for a second current.
Abstract:
Technologies are generally described for quadrature-based injection-locking offing oscillators. In some examples, an external signal may be injected into a ring oscillator. Phase signals may be measured from within the ring oscillator and used to determine a mean quadrature error (MQE) that characterizes the difference in frequency between the external signal and the ring oscillator's natural frequency. A control signal may then be generated from the MQE and used to adjust the ring oscillator natural frequency to reduce the difference between the ring oscillator natural frequency and the external signal.