摘要:
An image monitor system monitors characteristics of an ion beam employed in ion implantation. The monitored characteristics can include particle count, particle information, beam current intensity, beam shape, and the like. The system includes one or more image sensors that capture frames or images along a beam path of an ion beam. An image analyzer analyzes the captured frames to obtain measured characteristics. A controller determines adjustments or corrections according to the measured characteristics and desired beam characteristics.
摘要:
An ion implantation apparatus includes an ion irradiation unit. The ion irradiation unit irradiates a plurality of areas of a target substrate with ion beams each of which reaches the substrate at corresponding one incident angle. An incident angle measuring instrument measures the incident angle of each of the ion beams. A controller is provided with information from the incident angle measuring instrument and controls the ion irradiation unit in accordance with the information so that a difference among incident angles is set to within ±0.1°.
摘要:
Angle of incidence measurements along an axis of ion implantation are obtained by employing positive and negative slot structures. The positive slot structures have entrance openings, exit openings, and slot profiles there between that obtain portion(s) of an ion beam having a selected range of angles in a positive direction. The negative slot structures have entrance openings, exit openings, and slot profiles there between that obtain portion(s) of the ion beam having the selected range of angles in a negative direction. A first beam measurement mechanism measures beam current of the positive portion to obtain a positive angle beam current measurement. A second beam measurement mechanism measures beam current of the negative portion to obtain a negative angle beam current measurement. An analyzer component employs the positive angle beam current measurement and the negative angle beam current measurement to determine a measured angle of incidence.
摘要:
Dosimetry systems and methods are also presented for measuring a scanned ion beam at a plurality of points along a curvilinear path at a workpiece location in a process chamber. An illustrated dosimetry system comprises a sensor and a mounting apparatus that supports support the sensor and selectively positions the sensor at a plurality of points along the curvilinear path, wherein the mounting apparatus can selectively position the sensor to point toward a vertex of the scanned ion beam.
摘要:
The present invention facilitates semiconductor device fabrication by monitoring and correcting angular errors during ion implantation procedures via an incident ion beam angle detector. Additionally, the present invention facilitates semiconductor device fabrication by calibrating a process disk with respect to an incident ion beam without measuring implantation results on wafers prior to an ion implantation process.
摘要:
An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and an implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a first rotation member rotatably coupled to the implantation chamber and overlaying an opening in the implantation chamber. The workpiece support structure further includes a second rotation member rotatably coupled to the first rotation member and having a rotating shaft that protrudes through the first member and an axis of rotation offset from an axis of rotation of the first rotation member. The workpiece support structure also includes a third member fixedly attached to the second rotation member that extends into the implantation chamber, the third member including a rotatable drive supporting the workpiece having an axis of rotation offset from the axis of rotation of the first rotation member. The first rotation member, the second rotation member and the rotatable drive of the third rotation member rotate to move the workpiece along a path of travel for implantation of the implantation surface wherein a distance that the ion beam moves through the implantation chamber before striking the implantation surface of the workpiece is constant.
摘要:
An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and an implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a first rotation member rotatably coupled to the implantation chamber and including an opening extending through the rotation member and aligned with an opening in a wall of the implantation chamber. The workpiece support structure further includes a second rotation member rotatably coupled to the first rotation member and having an axis of rotation offset from an axis of rotation of the first rotation member, the second rotation member overlying the opening of the first rotation member. The workpiece support structure also includes a third member fixedly attached to the second rotation member, the third member including a rotatable drive supporting the workpiece. The first rotation member, the second rotation member and the rotatable drive of the third rotation member rotate to move the workpiece along a path of travel for implantation of the implantation surface wherein a distance that the ion beam moves through the implantation chamber before striking the implantation surface of the workpiece is constant.
摘要:
The present invention facilitates semiconductor device fabrication by monitoring uniformity of beam current and angle of incidence at various locations throughout an ion beam (e.g., a wider portion of a ribbon beam). One or more uniformity detectors are employed within an ion implantation system (e.g., single wafer based system and/or a multiple wafer based system) and are comprised of a number of elements. The respective elements comprise an aperture that selectively obtains a beamlet from an incident ion beam and a pair of sensors that measure beam current as a function of the incoming angle of the ion beam. The angle of incidence at for particular elements can be determined at least partially from the measured beam current by the pairs of sensors. As a result, generation of an ion beam can be adjusted to improve uniformity as indicated and ion implantation can be performed with an improved uniformity and under tighter process controls.
摘要:
An ion implantation apparatus includes an implantation part, a measuring part, and a controller. The ion implantation part implants ions into an implantation region located at a bottom of a concave portion provided on a semiconductor substrate. The measuring part measures an implantation amount of ions corresponding to an aspect ratio of the concave portion based on ions implanted from the implantation part thereinto, at a first position at which the semiconductor substrate is arranged when the ions are implanted into the implantation region or a second position close to the first position. The controller controls the implantation part to stop implantation of the ions into the measuring part when an accumulated amount of the implantation amount has reached a predetermined amount according to a target accumulation amount of the implantation region.
摘要:
An angle measurement device includes: a slit through which an ion beam is incident, and a width direction of which is orthogonal to a beam traveling direction of the ion beam toward a wafer; and a plurality of electrode bodies which are provided at positions away from the slit in the beam traveling direction, and each of which includes a beam measurement surface that is a region which is exposed to the ion beam having passed through the slit. The plurality of electrode bodies are disposed such that the beam measurement surfaces of the electrode bodies are arranged in order in the width direction of the slit and the beam measurement surfaces adjacent to each other in the width direction of the slit deviate from each other in the beam traveling direction.