Abstract:
An electric charged particle beam microscope is provided in which a specimen movement due to a specimen rotation is classified into a repeatable movement and a non-repeatable movement, a model of movement is determined for the repeatable movement, a range of movement is determined for the non-repeatable movement, the repeatable movement is corrected on the basis of the movement model through open-loop and the non-repeatable movement is corrected under a condition set on the basis of the range of movement.
Abstract:
In a eucentric side entry goniometer stage used in an electron microscope controlled in five-axes of specimen positions (x, y, z) and specimen tilt angles (.theta..sub.x, .theta..sub.y), image shifting during tilting a specimen is automatically corrected. Assuming that the coordinates of an observed point are (x, y, z), shifting of observed image is automatically corrected by calculating correction values of image shifting .DELTA.y and .DELTA.z using a calculator based on the following equations and by shifting the observed point to a coordinates (x, y-.DELTA.y, z-.DELTA.z) using a specimen position and tilt angle controller when the tilt angle .theta..sub.y is varied from .theta..sub.y1 to .theta..sub.y2 wherein.DELTA.y=y(1-cos .theta..sub.y2 /cos .theta..sub.y1).DELTA.z=y(sin .theta..sub.y2 -sin .theta..sub.y1)/cos .theta..sub.y1.
Abstract translation:在用于在五轴样本位置(x,y,z)和样本倾斜角度(θx,θy)中控制的电子显微镜中使用的偏心侧入口测角器台中,自动校正样品倾斜期间的图像偏移。 假设观测点的坐标为(x,y,z),则通过使用基于以下等式的计算器计算图像偏移DELTA y和DELTA z的校正值来自动校正观察图像的偏移,并且通过将观测点 当倾斜角θy从θ1到θ2变化时,使用样本位置和倾斜角度控制器到坐标(x,y-DELTA y,z-DELTA z),其中DELTA y = y(1-cosθy2 / cosθy1)DELTA z = y(sinθy2-sinθy1)/cosθy1。
Abstract:
In the present invention, a stage device is configured to: provide a marker on a specimen, a specimen holder or a rotary table that allows measurement of position and direction; perform a rotation and translation movement of a stage according to a predetermined operation pattern; measure the position and direction of the marker there; identify the rotation center position of the rotary table from the results of this measurement; further create a correction value table relative to a rotation angle by calculating rotation-angle correction value for correcting the rotation error, and translation correction value for correcting a positional variation of the rotation center position; obtain from the correction value table the correction values associated with either an inputted rotation-angle command value or an actual rotation angle; and control the stage device by correcting either the rotation-angle and translation-position command values inputted or a rotation-angle and translation-position detected.
Abstract:
A method of processing objects by a FIB (Focused Ion Beam) system and a carrier used therewith are provided. The carrier includes a carrying member and a processing portion having an object disposed thereon. Before the carrier is disposed into the FIB system, the carrying member is set to be flush in height with the processing portion having the object disposed thereon. After an eucentric height adjustment inside the FIB system, both the carrying member and the processing portion are in a same plane with the eucentric point of the system. Therefore, after the object on the processing portion is processed, a processed object or a processed block of the object can be moved to the carrying member without performing further eucentric height adjustment with respect to the carrying member.
Abstract:
Dosimetry systems and methods are also presented for measuring a scanned ion beam at a plurality of points along a curvilinear path at a workpiece location in a process chamber. An illustrated dosimetry system comprises a sensor and a mounting apparatus that supports support the sensor and selectively positions the sensor at a plurality of points along the curvilinear path, wherein the mounting apparatus can selectively position the sensor to point toward a vertex of the scanned ion beam.
Abstract:
A workpiece adjustment assembly is disclosed. The assembly can include a shaft, a spherical bearing, and a wafer support. A spherical housing receives the spherical bearing and allows the bearing to rotate therein. The housing and bearing may form an air bearing. A seal may be formed in the housing to prevent gas from the air bearing and the ambient atmosphere from migrating to a process chamber side of the housing. A set of spherical air pads may be positioned on an ambient side of the bearing to press the bearing against the housing when the process chamber is not under vacuum conditions. The seal can include a set of differentially pumped grooves. The spherical bearing enables the wafer manipulation end, and a wafer attached thereto, to be moved with four degrees of freedom. The arrangement facilitates isocentric scanning of a workpiece. Methods for using the assembly are also disclosed.
Abstract:
A workpiece adjustment assembly is disclosed. The assembly can include a shaft, a spherical bearing, and a wafer support. A spherical housing receives the spherical bearing and allows the bearing to rotate therein. The housing and bearing may form an air bearing. A seal may be formed in the housing to prevent gas from the air bearing and the ambient atmosphere from migrating to a process chamber side of the housing. A set of spherical air pads may be positioned on an ambient side of the bearing to press the bearing against the housing when the process chamber is not under vacuum conditions. The seal can include a set of differentially pumped grooves. The spherical bearing enables the wafer manipulation end, and a wafer attached thereto, to be moved with four degrees of freedom. The arrangement facilitates isocentric scanning of a workpiece. Methods for using the assembly are also disclosed.
Abstract:
There is provided a method of arranging, as a composite charged-particle beam system, a gas ion beam apparatus, an FIB and an SEM in order to efficiently prepare a TEM sample. The composite charged-particle beam system includes an FIB lens-barrel 1, an SEM lens-barrel 2, a gas ion beam lens-barrel 3, and a rotary sample stage 9 having an eucentric tilt mechanism and a rotating shaft 10 orthogonal to an eucentric tilt axis 8. In the composite charged-particle beam system, an arrangement is made such that a focused ion beam 4, an electron beam 5 and a gas ion beam 6 intersect at a single point, an axis of the FIB lens-barrel 1 and an axis of the SEM lens barrel 2 are orthogonal to the eucentric tilt axis 8, respectively, and the axis of the FIB lens-barrel 1, an axis of the gas ion beam lens-barrel 3 and the eucentric tilt axis 8 are in one plane.
Abstract:
There is provided a method of arranging, as a composite charged-particle beam system, a gas ion beam apparatus, an FIB and an SEM in order to efficiently prepare a TEM sample. The composite charged-particle beam system includes an FIB lens-barrel 1, an SEM lens-barrel 2, a gas ion beam lens-barrel 3, and a rotary sample stage 9 having an eucentric tilt mechanism and a rotating shaft 10 orthogonal to an eucentric tilt axis 8. In the composite charged-particle beam system, an arrangement is made such that a focused ion beam 4, an electron beam 5 and a gas ion beam 6 intersect at a single point, an axis of the FIB lens-barrel 1 and an axis of the SEM lens barrel 2 are orthogonal to the eucentric tilt axis 8, respectively, and the axis of the FIB lens-barrel 1, an axis of the gas ion beam lens-barrel 3 and the eucentric tilt axis 8 are in one plane.
Abstract:
A particle-optical apparatus comprising: A first source, for generating a first irradiating beam (E) along a first axis (A1); A second source, for generating a second irradiating beam (I) along a second axis (A2) that intersects the first axis at a beam intersection point, the first and second axes (A1, A2) defining a beam plane, A stage assembly (3) for positioning a sample in the vicinity of the beam intersection point, provided with: A sample table (21) to which the sample can be mounted; A set of actuators, arranged so as to effect translation of the sample table along directions substantially parallel to an X-axis perpendicular to the beam plane, a Y-axis parallel to the beam plane, and a Z-axis parallel to the beam plane, said X-axis, Y-axis and Z-axis being mutually orthogonal and passing through the beam intersection point, wherein the set of actuators is further arranged to effect: rotation of the sample table about a rotation axis (RA) substantially parallel to the Z-axis, and; rotation of the sample table about a flip axis (FA) substantially perpendicular to the Z-axis, whereby the flip axis (FA) can itself be rotated about the rotation axis (RA).