Abstract:
Disclosed are cellulose-based flexible gels containing cellulose nanorods, ribbons, fibers, and the like, and cellulose-enabled inorganic or polymeric composites, wherein the gels have tunable optical, heat transfer, and stiffness properties. The disclosed gels are in the form of hydrogels, organogels, liquid-crystal (LC) gels, and aerogels. Further disclosed are highly transparent and flexible cellulose nanofiber-polysiloxane composite aerogels featuring enhanced mechanical robustness, tunable optical anisotropy, and low thermal conductivity. Further disclosed are gels comprising cellulosic material derived from bacteria and processes for preparing bacterial cellulose gels and methods of use.
Abstract:
Described herein are polymer complexes, including polymer gels and polymer foams, containing electrically conductive polymers and ionic liquids. The polymer complexes described herein are useful as components of electronic devices.
Abstract:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
Abstract:
Porous spherical particles of polyamide 11 or polyamide 12 can be produced by an industrially advantageous process which comprises the steps of mixing a polyamide solution of polyamide 11 or polyamide 12 dissolved in a phenol compound and a low molecular weight aliphatic alcohol which is a poor solvent for the polyamides but is well compatible with the phenol compound in the presence of a high molecular weight alkylene glycol to prepare a mixture solution having an initial viscosity of 10 mPa·s or more, and allowing the mixture solution to stand, to precipitate polyamide particles.
Abstract:
A method for preparation of porous polyimide microparticles comprising, forming polyamide acid microparticles by pouring polymer solution prepared by dissolving polyamide acid containing 0.5 to 80 weight % of alkali metal salt to polyamide acid by 0.1 to 15 weight % concentration into a poor solvent selected from the group consisting of aliphatic solvents, alicyclic solvents, aromatic solvents, CS2 and mixture of two or more these solvents and the temperature of which is adjusted to the range from −20° C. to 60° C., wherein particle size of said polyamide acid microparticles is adjusted to 50 nm to 10000 nm by controlling the temperature of said poor solvent, pore size of said polyamide acid microparticles is adjusted to the range from 20 nm to 500 nm and porosity of said polyamide acid microparticles is adjusted to the range from 0.1% to 30% by controlling a content or a kind of said alkali metal salt, then treating said polyamide acid microparticles by chemical imidation or thermal imidation, or by thermal imidation after chemical imidation so that the particle size distribution, pore size and porosity of said polyamide acid microparticles can be maintained.
Abstract:
The present invention relates to a porous gelatin material in the form of spherical particles with a continuous pore structure and cast, three-dimensional, porous gelatin structures. The invention also comprises methods for preparation of the porous gelatin materials and structures. The method for preparing the porous gelatin material in the form of spheres with a continuous pore structure comprises the steps of preparing a homogenous water-based gelatin solution, adding an emulsifier with an HLD value >9, adding a first composition comprising an organic solvent and an emulsifier with an HLB value >9, adding a second composition comprising an organic solvent and an emulsifier with an HLB value
Abstract:
A method of production of a highly absorbent, polysaccharide-based material, wherein an aqueous solution containing a starting material including a cross-linkable polysaccharide-based polymer blend of an electrically charged polysaccharide-based polymer and an electrically uncharged polysaccharide-based polymer is subjected to cross-linking in order to obtain a water-swelled gel. The cross-linked, water-swelled gel is dessicated with a polar solvent.
Abstract:
A .gamma.-ray-sterilizable hydrophilic porous material has been found which includes a continuous layer made of a synthetic polymer compound forming a porous substrate and a hydrophilic and .gamma.-ray-resistant polymer supported on at least part of the surface of the porous substrate in an amount not less than 5% by weight, based on the porous substrate. The hydrophilic porous material has an average pore diameter in the range of 0.02 to 20 .mu.m, a porosity in the range of 10 to 90% and a wall thickness in the range of 10 .mu.m to 5.0 mm.
Abstract:
An active agent delivery device comprises (a) microporous material comprising a matrix consisting essentially of linear ultrahigh molecular weight polyolefin, a large proportion of finely divided water-insoluble filler of which at least about 50 percent by weight is siliceous, and interconnecting pores; and (b) a releasable active agent or precursor thereof associated with at least a portion of the filler.
Abstract:
A flat permeable membrane of polyolefin 10 to 500 .mu.m in thickness, which membrane has compact layers of intimately bound fine particles of polyolefin formed one each in the opposite surface regions of the membrane and a layer of an aggregate of fine discrete particles of an average diameter of 0.01 to 5 .mu.m formed between the compact layers and, consequently, has fine through pores labyrinthically extended in the direction of thickness of the membrane to establish communication between the opposite surfaces of the membrane and a method for the manufacture of the permeable membrane.