Abstract:
An apparatus produces chemical assay devices from a hydrophilic substrate, hydrophobic materials, and a chemical reagent. The apparatus includes a first print zone that forms hydrophobic material in a predetermined arrangement on the hydrophilic substrate, a structure formation unit configured to enable the first layer of the hydrophobic material to penetrate the hydrophilic substrate.
Abstract:
A method of forming hydrophobic structures in a hydrophilic print medium includes operating a plurality of inkjets to form an arrangement of hydrophobic material on first side of a print medium that moves in a process direction at a predetermined velocity. The method further includes moving the print medium through a convection heater at the predetermined velocity to enable the hydrophobic material to penetrate the print medium to form hydrophobic structures within the print medium.
Abstract:
A chemical assay device includes a hydrophilic substrate and one or more hydrophobic structures that extend from a first side of the hydrophilic substrate to a second side of the hydrophilic substrate. A hydrophobic structure in the hydrophilic substrate forms a fluid barrier wall that extends from the first side of the hydrophilic substrate to the second side of the hydrophilic substrate with a deviation of less than 20° from a perpendicular axis between the first side and the second side. The hydrophobic material in the first hydrophobic structure occupies more than 50% of a void volume fraction of the hydrophilic substrate.
Abstract:
A chemical assay device includes a hydrophilic substrate and one or more hydrophobic structures that extend from a first side of the hydrophilic substrate to a second side of the hydrophilic substrate. A hydrophobic structure in the hydrophilic substrate forms a fluid barrier wall that extends from the first side of the hydrophilic substrate to the second side of the hydrophilic substrate with a deviation of less than 20° from a perpendicular axis between the first side and the second side. The hydrophobic structure is formed from a wax or a phase change ink.
Abstract:
A method of forming hydrophobic structures in a hydrophilic print medium includes operating a plurality of inkjets to form an arrangement of hydrophobic material on first side of a print medium that moves in a process direction at a predetermined velocity. The method further includes moving the print medium through a convection heater at the predetermined velocity to enable the hydrophobic material to penetrate the print medium to form hydrophobic structures within the print medium.
Abstract:
The present disclosure proposes a colorimetric method that couples sensor design with image processing to enable automated evaluation of test results obtained by paper-based sensors. The proposed method can match ink color and dye used in colorimetric reaction in terms of their absorption in spectral range (e.g., red, green, blue). A near-zero absorption channel can then be used to normalize absorption channels and construct a composite image.
Abstract:
A system for generating a differential gloss image includes a marking material having absorbing elements useful for absorbing electromagnetic radiation emitted by a laser glossing imager, and accommodating heating and resultant melting of the marking material for altering a surface of the marking material image. The absorbing element is a pigment or dye. The absorbing element is carbon black, or a pigment capable of absorbing IR light, while being transparent to visible light.
Abstract:
A computer system configured to improve health outcomes and reduce medical service costs includes a memory storing a computer program and a processor that executes the computer program. The computer program receives a medical inquiry, extracts a keyword using natural language processing (NLP), selects a category of concern indicated by the medical inquiry from a library using the keyword, determines leading factors contributing to the category of concern based on a statistical model analysis, selects analytic modules from a library that receive at least one of the leading factors as an input parameter or produce at least one of the leading factors as an output parameter, and generates a recommendation including a listing of the selected analytic modules and/or a constructed workflow including at least two of the selected analytic modules chained together via respective input parameters and output parameters of the at least two selected analytic modules.
Abstract:
A chemical assay device includes a hydrophilic substrate and one or more hydrophobic structures that extend from a first side of the hydrophilic substrate to a second side of the hydrophilic substrate. A hydrophobic structure in the hydrophilic substrate forms a fluid barrier wall that extends from the first side of the hydrophilic substrate to the second side of the hydrophilic substrate with a deviation of less than 20° from a perpendicular axis between the first side and the second side. The hydrophobic structure is formed from a wax or a phase change ink.
Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.