Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.
Abstract:
A method of adjusting labor capacity in a print production environment may include receiving, by a computing device, a realized demand value for a print production environment and determining that the realized demand value exceeds a total labor capacity associated with one or more workers in the print production environment. The method may include, in response to determining that the realized demand value exceeds the total labor capacity associated with the print production environment, determining one or more updated compensation rates for the one or more workers, determining one or more production parameters corresponding to each of the updated compensation rates, presenting the determined updated compensation rates and corresponding production parameters to a user, receiving a selection of an updated compensation rate from the presented compensation rates, and communicating the selected updated compensation rate to the one or more workers.
Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.
Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.
Abstract:
A method, non-transitory computer readable medium, and apparatus for routing a call using a hybrid call routing scheme are disclosed. For example, the method receives a call for a customer agent at a call center, identifies a list of available customer agents, calculates a hybrid score for each one of the available customer agents, wherein the hybrid score is based upon a combination of a longest-idle-agent routing parameter, a performance based routing parameter and a tuning parameter, selects a customer agent from the list of the available customer agents having a highest hybrid score and routes, by the processor, the call to the customer agent that is selected.
Abstract:
A method and a non-transitory computer readable medium for generating polygons within a geographic region that satisfy a query are disclosed. For example, the method extracts a plurality of nodes, a plurality of service providers and information associated with the plurality of nodes and the plurality of service providers of the geographic region from a geographic data source, creates a node table based on the information that was extracted, receives the query for one or more nodes having a predefined number of service providers within a travel budget, determines the one or more nodes from the node table that satisfy the query, and generates one or more generate polygons around the one or more nodes that satisfy the query within the geographic region.
Abstract:
A method and a non-transitory computer readable medium for generating polygons within a geographic region that satisfy a query are disclosed. For example, the method extracts a plurality of nodes, a plurality of service providers and information associated with the plurality of nodes and the plurality of service providers of the geographic region from a geographic data source, creates a node table based on the information that was extracted, receives the query for one or more nodes having a predefined number of service providers within a travel budget, determines the one or more nodes from the node table that satisfy the query, and generates one or more generate polygons around the one or more nodes that satisfy the query within the geographic region.
Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.
Abstract:
A computer system configured to improve health outcomes and reduce medical service costs includes a memory storing a computer program and a processor that executes the computer program. The computer program receives a medical inquiry, extracts a keyword using natural language processing (NLP), selects a category of concern indicated by the medical inquiry from a library using the keyword, determines leading factors contributing to the category of concern based on a statistical model analysis, selects analytic modules from a library that receive at least one of the leading factors as an input parameter or produce at least one of the leading factors as an output parameter, and generates a recommendation including a listing of the selected analytic modules and/or a constructed workflow including at least two of the selected analytic modules chained together via respective input parameters and output parameters of the at least two selected analytic modules.
Abstract:
A fluid level sensor is configured for identifying a fluid level in a small volume reservoir, such as a fluid reservoir in an ejector head. The reservoir includes a plurality of vertically arranged chambers. A plurality of piezoelectric transducers is distributed over the chambers in a one-to-one correspondence. At least one electrical conductor is electrically connected to each piezoelectric transducer in the plurality of piezoelectric transducers to enable each piezoelectric sensor to receive an electrical signal to a portion of a wall of the chamber to produce an acoustical wave in the chamber and to transmit an electrical signal from each piezoelectric transducer in response to a fluctuating pressure on each piezoelectric transducer produced by the acoustical wave in the chamber.