Abstract:
A camera (210) for providing an adjusted image (214) of a scene (12) includes an apparatus frame (224), an optical assembly (222), a capturing system (226), and a control system (232). The optical assembly (222) is adjustable to alternatively be focused on a first focal area (356A) and a second focal area (356B) that is different than the first focal area (356A). The capturing system (226) captures a first captured image (360A) when the optical assembly (222) is focused at the first focal area (356A) and captures a second captured image (360B) when the optical assembly (222) is focused at the second focal area (356B). The control system (232) provides the adjusted image (214) of the scene (12) based upon the first captured image (360A) and the second captured image (360B). Additionally, the control system (232) can perform object depth extraction of one or more objects (16) (18) (20) in the scene (12). Alternatively, the multiple captured images (360A) (360B) can be adjusted by a separate adjustment system (680).
Abstract:
A lithographic projection apparatus includes an optical element through which a substrate is exposed with an exposure beam. A space between the optical element and the substrate is filled with liquid during the exposure. In addition, a gap is formed between a member and a surface, through which the exposure beam does not pass, of the optical element. A suction is provided to the gap.
Abstract:
A wafer stage countermass assembly generally includes a base supporting one or more stages and first and second countermasses. The first and second stages move in one or more degrees of freedom. The countermasses move in at least one degree of freedom and, under ideal conditions, move to counter the movement of the stages in operation and thus preserve the systems center of gravity to avoid unwanted body motion. However, under actual conditions the countermasses may under travel or over travel their ideal trajectory. To more closely track the ideal trajectory, a controller actuates trim motors to apply small forces to the countermasses to push them towards a reference position in the Y direction. A second embodiment also takes into account the X position the stage(s) to cancel torque.
Abstract:
A simplified reticle removal system used with an electron beam system. The simplified reticle removal system includes a reticle chamber having an angled opening and a maintenance panel removably or pivotably attached thereto. The angled opening provides access to a reticle stage housed within the reticle chamber. The angled opening further permits removal of the reticle stage from the reticle chamber without having to disassemble and remove the optics system of the electron beam system. This reduces maintenance and repair costs, as well as reduces down time of the electron beam system.
Abstract:
A chuck assembly for use in semiconductor processing equipment includes elements that permit reticle expansion and assembly misalignment without additional reticle deformation. Reticle expansion is allowed by flexible support elements that are positioned to move in the direction of expansion, but that also combine to provide the control necessary for processing. Misalignment is allowed by connections that attach the reticle securely and uniquely to the support elements despite some amount of imperfection in the reticle, or the connections themselves. Accounting in this way for expansion and misalignment prevents additional reticle distortion and thus improves the accuracy of the product.
Abstract:
The invention provides a reference assembly that is mounted coaxially with an axis of a projection unit used in lithographic equipment to form semiconductor devices and LCDs. The reference assembly is made of a material having a low coefficient of thermal expansion, and the reference assembly has one or more reference features such as a mirror or off-axis alignment system that represent the axis of the projection unit. The reference assembly is attached to a housing of the projection unit by expansion joints such as flexures, which absorb the thermal expansion and contraction of the housing without significantly affecting the relationship of the reference features to the axis of the projection unit. The invention also provides a projection unit incorporating a reference assembly as well as a method of providing reference features and a method of making a semiconductor device.
Abstract:
An XY stage for precision movement for use in aligning a wafer in a microlithography system. A main stage supporting the wafer straddles a movable beam that is magnetically driven in a first linear direction in the XY plane. A follower stage, mechanically independent of the main stage, also moves in the first linear (X) direction and its motion is electronically synchronized by a control system with the main stage motion in the X direction. Electromagnetic drive motors include magnetic tracks mounted on the follower stage which cooperate with motor coils mounted on the edges of the main stage to move the main stage in a second linear (Y) direction normal to the X direction. Thus the main stage is isolated from mechanical disturbances in the XY plane since there is no mechanical connections and is lightened by removing the weight of the magnetic tracks from the beam. A cable follower stage moves in the Y direction on the follower stage and supports the cables connecting to the main stage, thereby reducing cable drag. An air circulation system is provided in the magnetic tracks on the follower stage to remove heat from operation of the electromagnetic motors. Air is removed from a central region of each track by a vacuum duct enhanced by air plugs fitting at the two ends of the motor coil assembly on the main stage to contain the air therein.
Abstract:
The embodiments describe linear motor configurations having a polygonal shaped motor coil. The motor coil is e.g. hexagonal, diamond shaped, or double diamond shaped. Coil units are formed in a closed electrically conductive band surrounding a void. Coil units are formed e.g. from flex circuit material or by winding in a racetrack or folded tip fashion. Coil units are arranged in an overlapped shingle like manner to form a motor coil with substantially uniform thickness and high conductor density, providing high efficiency. Due to its substantially uniform thickness, the motor coil has a substantially flat cross section that allows the motor coil to be easily installed and removed from its associated linear magnetic track. The embodiments enable both moving coil and moving magnet linear motor configurations.
Abstract:
Apparatus and associated method for cooling a linear motor coil includes a motor coil having side walls, and at least one enclosure member which encloses each linear side wall and extends generally co-extensively with a width and a length of the side walls and juxtaposed to the side walls. Coolant passages are formed between and around an exterior of the side walls and the interior walls of at least one enclosure member for enclosing a coolant fluid flowable against the side walls. An inlet plenum is in flow connection to the coolant passages for flowing the coolant fluid through the coolant passages to cool the side walls and an outlet plenum is in flow connection to the coolant passages for removal of coolant fluid heated by operation of the motor coil.
Abstract:
An XY stage for precision movement for use in aligning a wafer in a microlithography system. A main stage supporting the wafer straddles a movable beam that is magnetically driven in a first linear direction in the XY plane. A follower stage, mechanically independent of the main stage, also moves in the first linear (X) difection and its motion is electronically synchronized by a control system with the main stage motion in the X direction. Electromagnetic drive motors include magnetic tracks mounted on the follower stage which cooperate with motor coils mounted on the edges of the main stage to move the main stage in a second linear (Y) direction normal to the X direction. Thus the main stage is isolated from mechanical disturbances in the XY plane since there is no mechanical connections and is lightened by removing the weight of the magnetic tracks from the beam. A cable follower stage moves in the Y direction on the follower stage and supports the cables connecting to the main stage, thereby reducing cable drag. An air circulation system is provided in the magnetic tracks on the follower stage to remove heat from operation of the electromagnetic motors. Air is removed from a central region of each track by a vacuum duct enhanced by air plugs fitting at the two ends of the motor coil assembly on the main stage to contain the air therein.