Abstract:
An adjusting method measures a wavefront aberration in a first direction of a target optical system and a wavefront aberration in a second direction different from the first direction of the target optical system, and calculates a first correction value and a second correction value based on a determinant assuming that a matrix that is made by adding a first correction value to each column of the first matrix is equal to a matrix that is made by adding a second correction value to each row of the second matrix. The first correction value is different every column, and the second correction value is different every row. The first matrix represents the wavefront aberration in the first direction, and the second matrix represents the wavefront aberration in the second direction. The adjusting method obtains a two-dimensional wavefront aberration of the target optical system by calculating the matrix that is made by adding the first correction value that has been calculated to the first matrix and/or the matrix that is made by adding the second correction value that has been calculated to the second matrix, and adjusts the target optical system based on the obtained two-dimensional wavefront aberration.
Abstract:
The present invention provides a photoresponsive gas-generating material that is to be used in a micropump of a microfluid device having fine channels formed therein, and is capable of effectively generating gases for transporting a microfluid in response to light irradiation and transporting the microfluid at an improved transport efficiency. The present invention also provides a micropump incorporating the photoresponsive gas-generating material.A photoresponsive gas-generating material 13 is to be used in a micropump having fine channels formed in a substrate, and comprises a photo-sensitive acid-generating agent and an acid-sensitive gas-generating agent, and a micropump 10 has the photoresponsive gas-generating material 13 housed therein.
Abstract:
An apparatus measuring wavefront aberration of an optical system includes a first mask in an object plane and having plural openings, an illumination optical system illuminating the openings of the first mask by using light from a light source, a second mask in an image plane and having an opening allowing passage of light containing aberration of the optical system and a pinhole/slit. The apparatus takes an image of interference fringe generated by light having passed through the optical system and the pinhole/slit and the light having passed through the optical system and the opening of the second mask, calculates an evaluation value to evaluate a state of the interference fringe by using image data of the image, determines, based on the evaluation value, whether the wavefront aberration of the inspected optical system is to be calculated, and calculates the wavefront aberration of the optical system from the image data.
Abstract:
To provide a micropump device having good controllability over the amount of gas generated from the gas generating material and thus the amount of liquid fed by the micropump. The micropump device includes a micropump 10 and a controller 50. The micropump 10 includes: a microchannel 22 serving as a channel for liquid; a gas generating material 34 generating a gas upon exposure to light and supplying the gas to the microchannel 22; and a light source 42 for irradiating the gas generating material 34 with light 44. The controller 50 supplies to the light source 42 a control pulse signal CS that causes the light source 42 to blink on and off in a binary manner by repeating a pulse train pattern composed of a fixed number of bits each capable of having two states, one of which is a first level allowing the light source 42 to be turned on and the other of which is a second level allowing the light source 42 to be turned off.
Abstract:
A method comprises determining a first processing center position to calculate a wavefront aberration of an optical system, determining a second processing center position to calculate a wavefront aberration, correcting the first processing center position in a first direction using the second processing center position in the first direction and correcting the second processing center position in a second direction using the first processing center position in the second direction.
Abstract:
A measurement method for measuring a wavefront aberration of a target optical system using a measurement apparatus that measures the wavefront aberration of the target optical system by detecting an interference pattern includes the steps of measuring as a system parameter a shift from a design value of a value that defines a structure of the measurement apparatus and the target optical system, and measuring the wavefront aberration of the target optical system using the system parameter.
Abstract:
A measuring device for measuring a wavefront aberration of an optical system includes a first mask for defining light that enters the optical system, and a second mask having first to fourth openings. The first opening transmits a component of the light passing through the optical system without removing information about the wavefront aberration of the optical system, and the second to fourth openings transmit components of the light passing through the optical system having the information about the wavefront aberration of the optical system removed.
Abstract:
A measuring device for measuring a wavefront aberration of an optical system includes a first mask for defining light that enters the optical system, and a second mask having first to fourth openings. The first opening transmits a component of the light passing through the optical system without removing information about the wavefront aberration of the optical system, and the second to fourth openings transmit components of the light passing through the optical system having the information about the wavefront aberration of the optical system removed.
Abstract:
A microfluidic device provided with a micro-channel structure capable of easily and positively providing therein micro-droplet having various dilution ratios. A micro-channel structure provided in a substrate (2) has a first mixing unit (11) and a second mixing unit (21) connected to the downstream side of the first mixing unit (11), with each mixing unit (11, 21) having first through third micro-channels. One end of a first weighing unit (11d) consisting of a micro-channel having a capacity equivalent to the volume of a specified-amount first micro-droplet is opened to a first micro-channel (11a), and the other end is opened to a merging unit (12a) provided on a second micro-channel (12). One end of a second weighing unit (13d) consisting of a micro-channel having a capacity equivalent to the volume of a specified-amount second micro-droplet is connected to a third micro-channel (13), and the other end is opened to the merging unit (12a). Any one of the first through third outlet ports of the first mixing unit is connected with the first or the third inlet port of the second mixing unit (21).
Abstract:
A method for creating frame data used when forming an image by moving a spatial light modulation device including a plurality of plotting element arrays in a scanning direction which forms an inclination angle θ with an arrangement direction of the plotting element arrays, and sequentially inputting the frame data to the spatial light modulation device according to the movement of the device in the scanning direction. The method is based on image data in which pixel data are disposed two-dimensionally in a sub-scanning direction corresponding to the scanning direction, and a main scanning direction orthogonal to the sub-scanning direction, and the frame data are created after performing a deformation process on the image data such that the pixel data corresponding to each of the plotting element arrays (e.g., circled numbers 1 to 6) are disposed in the main scanning direction.