Abstract:
A semiconductor device includes a bridge and a plurality of dies. The bridge is free of active devices and includes a substrate, an interconnect structure, a redistribution layer structure and a plurality of conductive connectors. The interconnect structure includes at least one dielectric layer and a plurality of first conductive features in the at least one dielectric layer. The redistribution layer structure includes at least one polymer layer and a plurality of second conductive features in the at least one polymer layer, wherein a sidewall of the interconnect structure is substantially flush with a sidewall of the redistribution layer structure. The conductive connectors are electrically connected to one another by the redistribution layer structure and the interconnect structure. The bridge electrically connects the plurality of dies.
Abstract:
A semiconductor device includes a semiconductor substrate, a contact region present in the semiconductor substrate, and a silicide present on a textured surface of the contact region. A plurality of sputter ions is present between the silicide and the contact region. Since the surface of the contact region is textured, the contact area provided by the silicide is increased accordingly, thus the resistance of an interconnection structure in the semiconductor device is reduced.
Abstract:
A semiconductor device and method of formation are provided. The semiconductor device comprises a silicide layer over a substrate, a metal plug in an opening defined by a dielectric layer over the substrate, a first metal layer between the metal plug and the dielectric layer and between the metal plug and the silicide layer, a second metal layer over the first metal layer, and an amorphous layer between the first metal layer and the second metal layer.
Abstract:
A method for forming a semiconductor device structure is provided. The method includes providing a substrate. The method includes transferring the substrate from a stage to a deposition chamber, and no heating operation is performed on the stage. The method also includes depositing a resistor layer on the substrate. The resistor layer may have a major structure that is amorphous.
Abstract:
A semiconductor device includes a semiconductor substrate comprising a contact region, a silicide present on the contact region, a dielectric layer present on the semiconductor substrate, the dielectric layer comprising an opening to expose a portion of the contact region, a conductor present in the opening, a barrier layer present between the conductor and the dielectric layer, and a metal layer present between the barrier layer and the dielectric layer, wherein a Si concentration of the silicide is varied along a height of the silicide.
Abstract:
A semiconductor device includes a semiconductor substrate, a contact region present in the semiconductor substrate, and a silicide present on a textured surface of the contact region. A plurality of sputter ions is present between the silicide and the contact region. Since the surface of the contact region is textured, the contact area provided by the silicide is increased accordingly, thus the resistance of a interconnection structure in the semiconductor device is reduced.
Abstract:
A method for forming a semiconductor device structure is provided. The method includes providing a substrate. The method includes transferring the substrate from a stage to a deposition chamber, and no heating operation is performed on the stage. The method also includes depositing a resistor layer on the substrate. The resistor layer may have a major structure that is amorphous.
Abstract:
A semiconductor device includes a semiconductor substrate, a contact region present in the semiconductor substrate, and a silicide present on a textured surface of the contact region. A plurality of sputter ions are present between the silicide and the contact region. Since the surface of the contact region is textured, the contact area provided by the silicide is increased accordingly, thus the resistance of a interconnection structure in the semiconductor device is reduced.