Underlayer for high performance magnetic tunneling junction MRAM
    22.
    发明授权
    Underlayer for high performance magnetic tunneling junction MRAM 有权
    高性能磁隧道结MRAM底层

    公开(公告)号:US08673654B2

    公开(公告)日:2014-03-18

    申请号:US12589465

    申请日:2009-10-23

    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the α-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the α-TaN layer. An α-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an α-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.

    Abstract translation: 公开了一种MRAM结构,其中底部电极具有无定形TaN覆盖层,以一致地提供在覆盖的MTJ中的AFM,固定,隧道势垒和自由层的平滑且致密的生长。 与传统的Ta覆盖层不同,TaN是抗氧化的并且具有高电阻率以避免由于覆盖层在隧道势垒层的侧壁上的再沉积引起的感测电流的分流。 或者,α-TaN层是MTJ中的种子层。 此外,种子层可以是由α-TaN层上的NiCr,NiFe或NiFeCr层构成的复合层。 也可以在TMR读取头中使用α-TaN覆盖层或种子层。 在α-TaN覆盖层上形成的MTJ具有高MR比,高Vb和RA,其类似于基于优化的Ta覆盖层的MTJ获得的结果。

    Magnetic element with improved out-of-plane anisotropy for spintronic applications
    23.
    发明申请
    Magnetic element with improved out-of-plane anisotropy for spintronic applications 有权
    具有改进的自旋电子应用的面外各向异性的磁性元件

    公开(公告)号:US20120205758A1

    公开(公告)日:2012-08-16

    申请号:US12931866

    申请日:2011-02-11

    Abstract: A magnetic element is disclosed wherein first and second interfaces of a free layer with a Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to lower switching current or increase thermal stability in a magnetic tunnel junction (MTJ). In a MTJ with a bottom spin valve configuration where the Hk enhancing layer is an oxide, the capping layer contacting the Hk enhancing layer is selected to have a free energy of oxide formation substantially greater than that of the oxide. The free layer may be a single layer or composite comprised of an Fe rich alloy such as Co20Fe60B20. With a thin free layer, the interfacial perpendicular anisotropy may dominate the shape anisotropy to generate a magnetization perpendicular to the planes of the layers. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.

    Abstract translation: 公开了一种磁性元件,其中具有Hk增强层和隧道势垒的自由层的第一和第二界面分别产生增强的表面垂直各向异性以降低开关电流或增加磁性隧道结(MTJ)中的热稳定性。 在具有底部自旋阀结构的MTJ中,其中Hk增强层是氧化物,选择与Hk增强层接触的覆盖层,以使氧化物形成的自由能基本上大于氧化物的自由能。 自由层可以是由富含Fe的合金如Co20Fe60B20组成的单层或复合材料。 利用薄的自由层,界面垂直各向异性可以支配形状各向异性以产生垂直于层的平面的磁化。 磁性元件可以是自旋电子器件的一部分或用作域壁运动装置中的传播介质。

    Novel method to form a nonmagnetic cap for the NiFe(free) MTJ stack to enhance dR/R
    24.
    发明申请
    Novel method to form a nonmagnetic cap for the NiFe(free) MTJ stack to enhance dR/R 有权
    为NiFe(自由)MTJ堆叠形成非磁性帽以增强dR / R的新方法

    公开(公告)号:US20070243638A1

    公开(公告)日:2007-10-18

    申请号:US11404446

    申请日:2006-04-14

    CPC classification number: H01L43/10 H01L43/08 H01L43/12

    Abstract: An MTJ in an MRAM array or TMR read head is disclosed in which a capping layer has a bilayer configuration with a non-magnetic NiFeX inner layer on a NiFe free layer and a Ta layer on the NiFeX layer to improve dR/R and minimize magnetostriction. Optionally, a trilayer configuration may be employed where the Ta layer is sandwiched between an inner NiFeX layer and an outer Ru layer. The X component in NiFeX is preferably an element having an oxidation potential greater than Ni or Fe such as Mg, Hf, Zr, Nb, or Ta. NiFeX is preferably formed by co-sputtering a NiFe target with an X target at a forward power of about 200 W and 50 W, respectively. In an MRAM structure, the Mg content in NiFeMg may be increased to >50 atomic % to improve the gettering power of removing oxygen from the free layer.

    Abstract translation: 公开了一种MRAM阵列或TMR读取头中的MTJ,其中封盖层具有在NiFe自由层上的非磁性NiFeX内层和NiFeX层上的Ta层的双层结构,以改善dR / R并最小化磁致伸缩 。 任选地,可以采用三层结构,其中Ta层夹在内部NiFeX层和外部Ru层之间。 NiFeX中的X成分优选为具有大于Ni,Fe的氧化电位的元素,例如Mg,Hf,Zr,Nb或Ta。 优选通过以约200W和50W的正向功率共同溅射具有X靶的NiFe靶来形成NiFeX。 在MRAM结构中,NiFeMg中的Mg含量可以增加到> 50原子%以提高从自由层除去氧的吸气能力。

    Novel seed layer for fabricating spin valve heads for ultra-high density recordings
    25.
    发明申请
    Novel seed layer for fabricating spin valve heads for ultra-high density recordings 有权
    用于制造用于超高密度记录的自旋阀头的新型种子层

    公开(公告)号:US20070223151A1

    公开(公告)日:2007-09-27

    申请号:US11804241

    申请日:2007-05-17

    Abstract: A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.

    Abstract translation: 一种用于形成具有新型种子层和合成反铁磁钉扎层的底部自旋阀传感器元件的方法,以及如此形成的传感器。 该新型种子层包含约30埃厚的CrCr原子百分比为31%的NiCr层。 在该种子层上,可以形成单个底部自旋阀读取传感器或具有合成反铁磁固定层的对称双自旋阀读取传感器。 可以在种子层上直接形成非常薄的(约80埃)MnPt钉扎层,然后可以随后形成极薄的钉扎和自由层,使得传感器可用于读取密度超过60Gb / in的记录介质, SUP> 2 。 此外,高钉扎场和最佳磁致伸缩产生极其鲁棒的传感器。

    Novel structure/method to form bottom spin valves for ultra-high density
    26.
    发明申请
    Novel structure/method to form bottom spin valves for ultra-high density 有权
    用于形成超高密度底部旋转阀的新型结构/方法

    公开(公告)号:US20060181815A1

    公开(公告)日:2006-08-17

    申请号:US11389677

    申请日:2006-03-27

    Abstract: Two embodiments of a GMR sensor of the bottom spin valve (BSV) spin filter spin valve (SFSV) type are provided together with methods for their fabrication. In each embodiment the sensor includes an in-situ naturally oxidized specularly reflecting layer (NOL) which is a more uniform and dense layer than such layers formed by high temperature annealing or reactive-ion etching. In one embodiment, the sensor has an ultra thin composite free layer and a high-conductance layer (HCL), providing high output and low coercivity. In a second embodiment, along with the same NOL, the sensor has a laminated free layer which includes a non-magnetic conductive layer, which also provides high output and low coercivity. The sensors are capable of reading densities exceeding 60 Gb/in2.

    Abstract translation: 底部自旋阀(BSV)旋转过滤器自旋阀(SFSV)型的GMR传感器的两个实施例与其制造方法一起提供。 在每个实施例中,传感器包括原位自然氧化的镜面反射层(NOL),其比通过高温退火或反应离子蚀刻形成的这种层更均匀和致密的层。 在一个实施例中,传感器具有超薄复合自由层和高电导层(HCL),提供高输出和低矫顽力。 在第二实施例中,与相同的NOL一起,传感器具有包括非磁性导电层的层叠自由层,其也提供高输出和低矫顽力。 这些传感器能够读取超过60Gb / in <2>的密度。

    Method of manufacturing integrated spin valve head
    27.
    发明授权
    Method of manufacturing integrated spin valve head 失效
    集成自旋阀头的制造方法

    公开(公告)号:US07089650B2

    公开(公告)日:2006-08-15

    申请号:US11012000

    申请日:2004-12-14

    Abstract: Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by a manufacturing method that includes inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer.

    Abstract translation: 目前,自旋阀头的屏蔽到屏蔽分离不能低于约800,这主要是由于传感器到引线短路问题。 现在已经通过包括在自旋阀传感器的顶部或底部(或两个)侧面上插入高磁导率,高电阻率薄膜屏蔽的制造方法来克服这个问题。 需要大于约500的磁导率,其电阻率大约为自由层的电阻率的约5倍,薄膜屏蔽层的电阻值大于自由层的4倍 层。

    Novel structure/method for form bottom spin valves for ultra-high density
    28.
    发明申请
    Novel structure/method for form bottom spin valves for ultra-high density 失效
    用于超高密度的底部自旋阀的新型结构/方法

    公开(公告)号:US20060162148A1

    公开(公告)日:2006-07-27

    申请号:US11389686

    申请日:2006-03-27

    Abstract: Two embodiments of a GMR sensor of the bottom spin valve (BSV) spin filter spin valve (SFSV) type are provided together with methods for their fabrication. In each embodiment the sensor includes an in-situ naturally oxidized specularly reflecting layer (NOL) which is a more uniform and dense layer than such layers formed by high temperature annealing or reactive-ion etching. In one embodiment, the sensor has an ultra thin composite free layer and a high-conductance layer (HCL), providing high output and low coercivity. In a second embodiment, along with the same NOL, the sensor has a laminated free layer which includes a non-magnetic conductive layer, which also provides high output and low coercivity. The sensors are capable of reading densities exceeding 60 Gb/in2.

    Abstract translation: 底部自旋阀(BSV)旋转过滤器自旋阀(SFSV)型的GMR传感器的两个实施例与其制造方法一起提供。 在每个实施例中,传感器包括原位自然氧化的镜面反射层(NOL),其比通过高温退火或反应离子蚀刻形成的这种层更均匀和致密的层。 在一个实施例中,传感器具有超薄复合自由层和高电导层(HCL),提供高输出和低矫顽力。 在第二实施例中,与相同的NOL一起,传感器具有包括非磁性导电层的层叠自由层,其也提供高输出和低矫顽力。 这些传感器能够读取超过60Gb / in <2>的密度。

    Integrated spin valve head
    29.
    发明授权
    Integrated spin valve head 失效
    集成自旋阀头

    公开(公告)号:US06995959B2

    公开(公告)日:2006-02-07

    申请号:US11011957

    申请日:2004-12-14

    Abstract: Currently, the shield-to-shield separation of a spin valve head cannot be below about 800 Å, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer. Five embodiments of the invention are described.

    Abstract translation: 目前,自旋阀头的屏蔽到屏蔽分离不能低于约800,这主要是由于传感器到引线短路问题。 现在已经通过在自旋阀传感器的顶部或底部(或两个)侧上插入高磁导率,高电阻率的薄膜屏蔽来克服这个问题。 需要大于约500的磁导率,其电阻率大约为自由层的电阻率的约5倍,薄膜屏蔽层的电阻值大于自由层的4倍 层。 描述本发明的五个实施例。

Patent Agency Ranking