Abstract:
A method of defining physical channel transmit/receiving timings and resource allocation is provided for use in a Time Division Duplex (TDD) communication system supporting carrier aggregation. A method for receiving, at a base station, a Hybrid Automatic Repeat Request (HARQ) acknowledgement from a terminal in a Time Division Duplex (TDD) system supporting carrier aggregation of a primary cell and at least one secondary cell includes transmitting a downlink physical channel through one of the primary and secondary cells, receiving the HARQ acknowledgement corresponding to the downlink physical channel of the primary cell at a first timing predetermined for the primary cell, and receiving the HARQ acknowledgement corresponding to the downlink physical channel of the secondary cell at second timing, wherein the second timing is determined according to the first timing.
Abstract:
Apparatuses (including base stations and terminals), systems, and methods for supporting both wideband and narrowband communications are described. In one aspect, a base station supporting first type terminals operating on a first bandwidth and second type terminals operating on a second bandwidth is described, having an information formatter, a transceiver, and a controller. The information formatter generates a Low-end Master Information Block (L-MIB) and a Low-end System Information Block (L-SIB), which are transmitted by the transceiver to first type and second type terminals. The L-MIB includes control information on an L-subframe configuration for supporting a second type terminal and a sub-band configuration of the L-subframe, while the L-SIB includes information on downlink reception and uplink transmission of the second type terminal. When the base station receives a Random Access Channel (RACH) preamble request from one of the terminals, the base station performs the random access procedure.
Abstract:
A method and apparatus for designing a Reference Signal (RS) used by a User Equipment (UE) to obtain respective channel estimates for demodulating respective Physical Downlink Control CHannels (PDCCHs), for determining at a UE a number of resource blocks to include for a reception of a Physical Downlink Shared CHannel (PDSCH), for determining at a UE a RS antenna port in order to enable spatial multiplexing of Enhanced PDCCH (EPDCCH) transmissions to different UEs, and for supporting Quadrature Amplitude Modulation 16 (QAM16) modulation, in addition to Quadrature Phase Shift Keying (QPSK) modulation, for EPDCCH transmissions without increasing a number of decoding operations at a UE are provided.
Abstract:
Slot-level remapping physical uplink control channels into two resource blocks, respectively located at two slots of a subframe, are generally adapted to a 3GPP LTE physical uplink. ACK/NAK resource blocks may be applied by the extended cyclic prefix, adapted to a complex 3GPP LTE physical uplink where mixed resource blocks (where the ACK/NAK and CQI channels coexist) may be applied by the normal cyclic prefix, and adapted to a complex 3GPP LTE physical uplink where mixed resource blocks (where the ACK/NAK and CQI channels coexist) may be applied by the extended cyclic prefix.
Abstract:
A method of controlling power of a user equipment for device to device communication in a wireless communication system, and a user equipment thereof, are provided. The method includes receiving power control related information of the D2D communication from a Base Station (BS), determining transmission power of the UE based on maximum available power of the UE and the received power control related information of the D2D communication, and transmitting data according to the determined transmission power.
Abstract:
A method and an apparatus are provided for transmitting channel state information of a terminal is provided. A first Channel State Information Reference Signal (CSI-RS) and a second CSI-RS are received. Channel State Information (CSI) is generated based on both the first CSI-RS and the second CSI-RS. The CSI is transmitted.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
Methods and apparatus are provided for transmitting and receiving a control signal. Indices of Resource Block (RB) sets are transmitted through higher layer signaling. Downlink Control Information (DCI) generated in a short DCI format is transmitted from a Base Station (BS) to a terminal. The DCI includes a first index indicating an RB set having at least one allocated RB and a second index indicating the at least one allocated RB. The terminal determines whether short DCI format is configured to be used. When the short DCI format is configured to be used, the first index and second index are received. The terminal communicates through the at least one allocated RB identified by the first and second indices.
Abstract:
A system access method of a narrowband terminal is provided for supporting both wideband and narrowband terminals in a cellular radio communication system. The method includes broadcasting a Shared CHannel (SCH) for a terminal to acquire system synchronization; transmitting a Low-end Master Information Block (L-MIB) including control information on an L-subframe configuration for supporting a second type terminal and a sub-band configuration of the L-subframe; transmitting a Low-end System Information Block (L-SIB) including information on downlink reception and uplink transmission of the second type terminal; and performing a random access procedure, when an attach request is received from one of the first type terminals and the second type terminals.
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.