Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
A semiconductor memory device capable of a high-accuracy data search is provided. Each of the memory cells can hold two bits of information and includes a first cell and a second cell. The semiconductor memory device also includes a match line and a search line pair to transfer search data. The semiconductor memory device further includes a logic operation cell to drive the match line based on comparison results between information held in the first and the second cell and search data transferred by the search line pair and a search line driver to drive the search line pair. In a state with the search line pair precharged to a third voltage between a first voltage and a second voltage, the search line driver drives, according to the search data, one and the other search line included in the search line pair to the first and the second voltage, respectively.
Abstract:
A semiconductor device includes an identification information generation circuit having a power supply control circuit whose output voltage is controlled by a control signal, and a memory array having a first cell power line and a second cell power line. The power supply control circuit outputs a first supply voltage and a second supply voltage to a first cell power line and a second power line, respectively, when the control signal is in a first state, and outputs an intermediate voltage to the first cell power line and the second cell power line when the control signal is in a second state.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
The invention provides a semiconductor integrated circuit device provided with an SRAM that satisfies the requirements for both the SNM and the write margin with a low supply voltage. The semiconductor integrated circuit device include: multiple static memory cells provided in correspondence with multiple word lines and multiple complimentary bit lines; multiple memory cell power supply lines that each supply an operational voltage to each of the multiple memory cells connected to the multiple complimentary bit lines each; multiple power supply circuits comprised of resistive units that each supply a power supply voltage to the memory cell power supply lines each; and a pre-charge circuit that supplies a pre-charge voltage corresponding to the power supply voltage to the complimentary bit lines, wherein the memory cell power supply lines are made to have coupling capacitances to thereby transmit a write signal on corresponding complimentary bit lines.
Abstract:
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.