Abstract:
A beamforming system includes a plurality of channelizers and a channel switching module in signal communication with the channelizers. Each channelizer is configured to receive a respective input radio frequency signal and to generate a plurality of respective channels in response to downsampling the respective input radio frequency signal. The channel switching module includes a channel combining circuit configured to selectively combine a common channel generated by each channelizer to form at least one steered analog beam.
Abstract:
Method and apparatus for leakage signal cancellation in a simultaneous transmit and receive RF system includes: generating a digital transmit signal for transmission from the system; receiving a receive signal produced by reflection of the transmit signal from an object or generated by a second RF system; adaptively filtering the transmit signal by an adaptive finite input response (FIR) filter; calculating filter coefficients for the adaptive FIR filter in real-time at a different sampling rate; adaptively inputting the calculated filter coefficients to the adaptive FIR filter to generate a cancellation signal in real-time; and applying the cancellation signal to the receive signal to cancel leakage in the receive signal to generate an optimum receive signal.
Abstract:
There is provided a programmable multiplier circuit for multiplying an input voltage signal by a binary coefficient, the multiplier circuit including a transconductor including a first amplifying transistor configured to convert the input voltage signal to a current signal, the first amplifying transistor having a gate configured to receive the input voltage signal, and a coefficient multiplier coupled to the transconductor and configured to multiply the current signal by the binary coefficient to generate an amplified current signal.
Abstract:
There is provided a finite impulse response (FIR) filter for filtering an input voltage signal to generate an output current signal, the FIR filter including a plurality of sample and hold (SH) circuits configured to simultaneously receive the input voltage signal, to sample the input voltage signal at successive sample times according to a sample clock, and to generate a plurality of sampled voltage signals, and a plurality of programmable analog multipliers coupled to the plurality of SH circuits and configured to multiply the plurality of sampled voltage signals by a plurality of binary multiplication factors to generate the output current signal.
Abstract:
There is provided a programmable multiplier circuit for multiplying an input voltage signal by a binary coefficient, the multiplier circuit including a transconductor including a first amplifying transistor configured to convert the input voltage signal to a current signal, the first amplifying transistor having a gate configured to receive the input voltage signal, and a coefficient multiplier coupled to the transconductor and configured to multiply the current signal by the binary coefficient to generate an amplified current signal.
Abstract:
Described herein are methods and systems capable of generating weighted parameter sets, which can be randomly addressed for dictating a waveform of each pulse to be generated by using a probability distribution function loader to load a memory table with waveform parameter values, wherein the values are loaded according to a weighted probability distribution function. Each value is then randomly addressed in the memory table and/or randomly selected from the memory table by a random number generator and fed into a signal generation circuit for creation of the waveform to be transmitted.
Abstract:
A transmitter. In some embodiments, the transmitter has an electrical input and an optical output. The transmitter may include a light source; an optical amplitude modulator having an optical input connected to the light source, a modulation input connected to the electrical input, and an output; and a first gated optical comparator, having a sampling clock input, an analog input connected to the output of the optical amplitude modulator, and an output. The first gated optical comparator may be configured to generate, for each cycle of an optical sampling clock signal received at the sampling clock input, a one-bit digital representation of an analog optical signal received at the analog input.
Abstract:
A system and method of digital beamforming for a monobit phased array radar system includes providing a plurality of monobit analog signals received by at least one antenna to at least one field programmable gate array (FPGA). A plurality of monobit SerDes transceivers within the FPGA convert the plurality of monobit analog signals into a plurality of multibit digital signals, each of the multibit digital signals being modified according to a digital signal conditioning value to calibrate, phase align, and synchronize the digital signals. A digital beam is formed by coherently combining the plurality of digital signals within the FPGA.
Abstract:
A signal identification system includes an analog adaptive channelizer having a plurality of channels. Each channel has a channel size defined by a bandwidth and a gain. The system further includes an electronic signal identification (ID) controller in signal communication with the analog adaptive channelizer. The ID controller is configured to determine a dynamic range event that modifies an energy level of an affected channel among the plurality of channels, and output a feedback signal including channel parameters based on the dynamic range event. The analog adaptive channelizer actively adjusts at least one of the bandwidth and the gain of the affected channel based on the feedback to change the channel size of the affected channel.
Abstract:
Circuit and method for modulating filter coefficients of a frequency channelizer having a filter bank include: receiving a wide spectrum input signal; modulating the filter coefficients of the filter bank to sweep a center frequency of each channel of the frequency channelizer, using a modulation scheme; and inputting frequency offset compensation caused by the modulation, and output signals of the frequency channelizer to an application processing circuit to convert the output signals to their original center frequencies.