Abstract:
One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
Abstract:
One feature pertains to generating a unique identifier for an electronic device by combining static random access memory (SRAM) PUFs and circuit delay based PUFs (e.g., ring oscillator (RO) PUFs, arbiter PUFs, etc.). The circuit delay based PUFs may be used to conceal either a challenge to, and/or response from, the SRAM PUFs, thereby inhibiting an attacker from being able to clone a memory device's response.
Abstract:
Technologies for updating a processing device, where a first device image is stored in a first (non-volatile) memory. When a new second device image is received via a communication interface, a first boot of the device is performed and a boot loader performs security processing on the second device image. Once security processing has passed, the second device image is set as a trial image and executed. The executed image is monitored to determine if predetermined operational parameters in the device are met. If the parameters are met, the second device image is set as a current image and the first device image is deactivated. A second boot is performed to make the new image operational for the device and the anti-rollback version one-time programmable fuses are blown. If the parameters are not met, the device revers to the first device image.
Abstract:
One feature pertains to generating a unique identifier for an electronic device by combining static random access memory (SRAM) PUFs and circuit delay based PUFs (e.g., ring oscillator (RO) PUFs, arbiter PUFs, etc.). The circuit delay based PUFs may be used to conceal either a challenge to, and/or response from, the SRAM PUFs, thereby inhibiting an attacker from being able to clone a memory device's response.
Abstract:
One feature pertains to a method for extracting a secret key during a secure boot flow of an integrated circuit. Specifically, the secure boot flow includes powering ON a first volatile memory circuit to generate a plurality of initial logical state values, deriving secret data based on the plurality of initial logical state values, storing the secret data in a secure volatile memory circuit that is secured by a secure execution environment (SEE), clearing the plurality of initial logical state values in the first volatile memory circuit, executing a cryptographic algorithm at the SEE to extract a secret key based on the secret data, and storing the secret key in the secure volatile memory circuit. The secure boot flow controls access to the first volatile memory circuit to secure the secret data and the plurality of initial logical state values from the insecure applications.
Abstract:
Disclosed is an apparatus and method to securely activate or revoke a key. For example, the apparatus may comprise: a storage device to store a plurality of pre-stored keys; a communication interface to receive an activate key command and a certificate associated with one of the pre-stored keys; and a processor. The processor may be coupled to the storage device and the communication interface and may be configured to: implement the activate key command to reboot the apparatus with the pre-stored key and the certificate; and determine if the reboot is successful.
Abstract:
One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
Abstract:
One feature pertains to a method for extracting a secret key during a secure boot flow of an integrated circuit. Specifically, the secure boot flow includes powering ON a first volatile memory circuit to generate a plurality of initial logical state values, deriving secret data based on the plurality of initial logical state values, storing the secret data in a secure volatile memory circuit that is secured by a secure execution environment (SEE), clearing the plurality of initial logical state values in the first volatile memory circuit, executing a cryptographic algorithm at the SEE to extract a secret key based on the secret data, and storing the secret key in the secure volatile memory circuit. The secure boot flow controls access to the first volatile memory circuit to secure the secret data and the plurality of initial logical state values from the insecure applications.
Abstract:
One feature pertains to an integrated circuit (IC) that includes a first plurality of ring oscillators configured to implement, in part, a physically unclonable function (PUF). The IC further includes a second plurality of ring oscillators configured to implement, in part, an age sensor circuit, and also a ring oscillator selection circuit that is coupled to the first plurality of ring oscillators and the second plurality of ring oscillators. The ring oscillator selection circuit is adapted to select at least two ring oscillator outputs from at least one of the first plurality of ring oscillators and/or the second plurality of ring oscillators. Notably, the ring oscillator selection circuit is commonly shared by the PUF and the age sensor circuit. Also, the IC may further include an output function circuit adapted to receive and compare the two ring oscillator outputs and generate an output signal.
Abstract:
A method is provided for using obtaining a reproducible device identifier from a physically unclonable function. An authentication device may receive a first physically unclonable function (PUF) dataset from the electronic device, the first PUF dataset including characteristic information generated from a physically unclonable function in the electronic device. The authentication device may then identify a pre-stored PUF dataset corresponding to the electronic device. Authentication of the electronic device may be performed by correlating the pre-stored PUF dataset and the first PUF dataset for the electronic device, wherein such correlation is based on a pattern or distribution correlation the pre-stored PUF dataset and the first PUF dataset. Because such correlation is performed on datasets, and not individual points, systematic variations can be recognized by the correlation operation leading to higher correlation than point-by-point comparisons.