Abstract:
Managing power rails, including: a plurality of power rails, each power rail coupled to at least one power supply and configured to support a plurality of similarly-configured loads; and a power rail controller configured to merge and split the plurality of power rails based on total power consumption of the plurality of similarly-configured loads. The power rail management also determines the optimal power rail mode (merge/split) based on current load of each rail and adjusts the dynamic clock and voltage scaling policy, workload allocation on each core, and performance limit/throttling management according to the power rail mode.
Abstract:
A package-on-package (PoP) device includes a first package, a second package, and a bi-directional thermal electric cooler (TEC). The first package includes a first substrate and a first die coupled to the first substrate. The second package is coupled to the first package. The second package includes a second substrate and a second die coupled to the second substrate. The TEC is located between the first die and the second substrate. The TEC is adapted to dynamically dissipate heat back and forth between the first package and the second package. The TEC is adapted to dissipate heat from the first die to the second die in a first time period. The TEC is further adapted to dissipate heat from the second die to the first die in a second time period. The TEC is adapted to dissipate heat from the first die to the second die through the second substrate.
Abstract:
Techniques for adjusting swing voltage for an I/O interface signal are described herein. In one embodiment, a device comprises an input/output (I/O) interface, and an I/O voltage controller. The I/O voltage controller is configured to determine a frequency or temperature of the I/O interface, and to adjust a swing voltage of the I/O interface based at least in part upon the determined frequency or temperature.
Abstract:
Various embodiments of methods and systems for balancing user experience in a multimedia conferencing community are disclosed. An exemplary embodiment envisions a portable computing device (“PCD”) receiving data indicative of one or more visual multimedia parameter settings in a companion PCD of the community. Based on the received data, the PCD may determine an adjustment to the settings of one or more of its own visual multimedia parameters such that a multimedia output in the form of a data packet stream is adjusted. In this way, the PCD may conserve power consumption by avoiding unnecessary multimedia workload processing for encoding a multimedia output that would not benefit the quality of service (“QoS”) delivered by the companion PCD. Additionally, by optimizing the quality of the multimedia output in view of the companion device parameter settings, the PCD may allocate more of its power budget to improving its own QoS level.
Abstract:
Systems, methods, and computer programs are disclosed for minimizing power consumption in graphics frame processing. One such method comprises: initiating graphics frame processing to be cooperatively performed by a central processing unit (CPU) and a graphics processing unit (GPU); receiving CPU activity data and GPU activity data; determining a set of available dynamic clock and voltage/frequency scaling (DCVS) levels for the GPU and the CPU; and selecting from the set of available DCVS levels an optimal combination of a GPU DCVS level and a CPU DCVS level, based on the CPU and GPU activity data, which minimizes a combined power consumption of the CPU and the GPU during the graphics frame processing.
Abstract:
Managing power rails, including: a plurality of power rails, each power rail coupled to at least one power supply and configured to support a plurality of similarly-configured loads; and a power rail controller configured to merge and split the plurality of power rails based on total power consumption of the plurality of similarly-configured loads. The power rail management also determines the optimal power rail mode (merge/split) based on current load of each rail and adjusts the dynamic clock and voltage scaling policy, workload allocation on each core, and performance limit/throttling management according to the power rail mode.
Abstract:
In an example, a method includes encoding video data at a first video quality using an encoding parameter, and determining an operating characteristic of one or more components of an electronic device configured to record the video data. The method also includes adjusting the encoding parameter based at least in part on the determined operating characteristic and while maintaining the first video quality, and encoding the video data at the first video quality using the adjusted encoding parameter.
Abstract:
In one embodiment, an electronic system comprises one or more power circuits configured to receive a first voltage from an external power source and produce a second voltage to one or more electronic components of the electronic system, and a power management circuit configured to determine one or more output currents of the one or more power circuits, wherein the power management circuit causes the external power source to change the first voltage based on at least one output current of at least one power circuit to reduce power loss of the at least one power circuit.
Abstract:
Some implementations provide a method for performing thermal management of an electronic device. The method determines a sensation value based on (i) a temperature of the electronic device, and (ii) a temperature rate change of the electronic device. The method associates a discomfort level from a plurality of discomfort levels, based on the determined sensation value, to the electronic device. At least one discomfort level is dynamically adjustable. The discomfort level specifies a maximum allowed activity for a processing unit of the electronic device. In some implementations, the discomfort level specifies how thermally uncomfortable the electronic device is for a user of the electronic device. In some implementations, each discomfort level from the several discomfort levels is associated with a particular range of sensation values. The sensation value is based on a user adjustable sensation model. The user adjustable sensation model is based on one of several thermal coefficient constants.
Abstract:
In a real-time system having first and second processor systems, cooperative dynamic clock and voltage scaling (“DCVS”) may include a first processor system monitoring a condition indicative of first processor workload, adjusting a first processor operating frequency in response to a detected amount of change in the first processor workload, and providing an indication based on the detected amount of change in the first processor workload to the second processor contemporaneously with providing first processor output data to the second processor. The cooperative DCVS may further include the second processor system adjusting a second processor operating frequency in response to the indication.