Abstract:
In one embodiment, a circuit includes a quantizer configured to convert an analog input signal to a digital signal. The quantizer includes a first feedback path including a first digital to analog converter (DAC) coupled from an output of the quantizer to a summing junction that is coupled to an input of the quantizer. The first feedback path converts the digital signal to a first corresponding analog value for combining with the analog input signal at the summing junction. Also, the quantizer includes a plurality of excess loop delay (ELD) compensation paths coupled to the summing junction configured to compensate for excess loop delay from a second feedback path coupled from the output of the quantizer to input of the quantizer via a loop filter. Second DACs in the second feedback path convert the digital signal to a second corresponding analog value for combining with the analog input signal.
Abstract:
An apparatus is disclosed for pipelined analog-to-digital conversion. In an example aspect, the apparatus includes a pipelined analog-to-digital converter (ADC). The pipelined ADC includes a first stage and a second stage. The first stage includes a sampler and a quantizer coupled to the sampler. The first stage also includes a current distribution circuit coupled to the sampler. The second stage includes a sampler coupled to the current distribution circuit and a quantizer coupled to the sampler of the second stage.
Abstract:
Aspects of the disclosure relate to an apparatus for wireless communication. The apparatus may include a set of power detectors configured to generate a set of analog signals related to a set of output signal power levels of a set of transmit chains of a transmitter, respectively; an analog summer; a set of switching devices configured to send a selected one or more of the set of analog signals to the analog summer, and substantially isolated unselected one or more of the set of power detectors from the analog summer, wherein the analog summer is configured to generate a cumulative analog signal based on a sum of the selected one or more of the set of analog signals; an analog-to-digital converter (ADC) configured to generate a digital signal based on the cumulative analog signal; and a controller configured to control the set of switching devices.
Abstract:
A receiver may include a time-interleaved charge sampler comprising a charge sampler switch in series with a charge sampler capacitor. The receiver may also include a current buffer configured to drive the time-interleaved charge sampler.
Abstract:
An example apparatus is disclosed for alias rejection through charge sharing. The apparatus includes a filter-sampling network, a digital-to-analog converter, and a charge-sharing switch. The filter-sampling network includes a capacitor and a first switch, which is coupled between an input node and the capacitor. The filter-sampling network is configured to connect or disconnect the capacitor to or from the input node via the first switch. The digital-to-analog converter includes a capacitor array and a second switch, which is coupled between the input node and the capacitor array. The capacitor array is coupled between the second switch and a charge-sharing node. The digital-to-analog converter is configured to connect or disconnect the capacitor array to or from the input node via the second switch. The charge-sharing switch is coupled between the charge-sharing node and the capacitor and is configured to connect or disconnect the capacitor to or from the digital-to-analog converter.
Abstract:
An example apparatus is disclosed for alias rejection through charge sharing. The apparatus includes a filter-sampling network, a digital-to-analog converter, and a charge-sharing switch. The filter-sampling network includes a capacitor and a first switch, which is coupled between an input node and the capacitor. The filter-sampling network is configured to connect or disconnect the capacitor to or from the input node via the first switch. The digital-to-analog converter includes a capacitor array and a second switch, which is coupled between the input node and the capacitor array. The capacitor array is coupled between the second switch and a charge-sharing node. The digital-to-analog converter is configured to connect or disconnect the capacitor array to or from the input node via the second switch. The charge-sharing switch is coupled between the charge-sharing node and the capacitor and is configured to connect or disconnect the capacitor to or from the digital-to-analog converter.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for implementing sampling rate scaling of an excess loop delay (ELD)-compensated continuous-time delta-sigma modulator (CTDSM) analog-to-digital converter (ADC). One example ADC generally includes a loop filter; a quantizer having an input coupled to an output of the loop filter; one or more digital-to-analog converters (DACs), each having an input coupled to an output of the quantizer, an output coupled to an input of the loop filter, and a data latch comprising a clock input for the DAC coupled to a clock input for the ADC; and a clock delay circuit having an input coupled to the clock input for the ADC and an output coupled to a clock input for the quantizer.
Abstract:
Reducing signal dependence for a reference voltage of a CDAC includes: splitting a decoupling capacitor into a plurality of capacitors smaller in size than a size of the decoupling capacitor; isolating at least one of the plurality of capacitors from a sampling buffer coupled to the reference voltage during a conversion phase; and supplying an appropriate amount of charge needed to replenish charge drawn by capacitors in the CDAC at each conversion step using a charge pump to pump in a dummy charge to the CDAC so that resulting configurations of the CDAC draw substantially similar amount of charge for each code change of the each conversion step.