Abstract:
The invention relates to a method of calculating a displacement of an object of interest comprising a step of calculating (101) a displacement model of said object of interest from adjacent images of a set of pre-acquired images of said object of interest, said displacement model reflects the position of said object of interest along the time. The method is characterized in that the method further comprises the following. A step of determining (102) a first sub-set of images (S1) from said set of pre acquired images within one periodical time cycle of said set of pre-acquired images on the basis of the displacement model. A first step of identifying (103) a second sub-set of images (S2) from newly-acquired images, wherein images in said second sub-set of images (S2) are consecutive and have the same most similar image in said first sub-set of images (S1), wherein a first set of similarity levels is determined by comparing a given image in said newly acquired images with each image of said first sub-set of images (S1), and wherein said most similar image has the largest similarity level in said first set of similarity levels. A first step of selecting (104) a given image in said second sub-set of images (S2) as a first reference image (I1). A second step of identifying (105) a third sub-set of images (S3) from said newly-acquired images, wherein images in said third sub-set of images (S3) are consecutive and have the same most similar image in said first sub-set of images (S1), wherein a set of similarity levels is determined by comparing a given image in said newly acquired images with each image of said first sub-set of images (S1), and wherein said most similar image has the largest similarity level in said set of similarity levels. A second step of selecting (106) a given image in said third sub-set of images (S3) as a second reference image (I2). A step of calculating (107) the displacement between said second reference image (I2) and said first reference image (I1). The invention also relates to a corresponding system of displacement calculation.
Abstract:
A system and method for perfusion imaging includes an imaging device (122) configured to collect perfusion information from a target area. A processing module (110) is configured to determine perfusion levels of the target area based on the perfusion information. A planning module (114) is configured to provide a treatment plan for the target area by correlating the perfusion levels with treatment activities for the target area, wherein the treatment activities are adjusted based upon characteristics of the perfusion levels in the target area.
Abstract:
Systems and methods for surgical robotic guidance include a robotic system (124) having a robot (122) configured to pass to a target through a port (134). The robotic system includes a visual component (102) employed in guiding the robot along a path to a location. The location is defined in accordance with a position and orientation of the robot. An ultrasonic probe (125) is guided by the robot to the location to permit engagement of the probe to collect ultrasonic images at the location.
Abstract:
Ultrasound mediated delivery (USMD), real-time quantitative feedback derived (S264) therefrom, and proceeding by the system based on the feedback all are, in some embodiments, operable automatically and without need for user intervention. USMD may occur in a clinical setting accompanied by assays (S276) or real-time feedback, or by means of a wearable device that, based on feedback, regulates USMD in real time. Optionally, the user is provided an indication (S281) as to progress or success, of a treatment. Electrodes (128) may be attached across tissue in which transient pores are produced via sonoporation in the USMD procedure, and in vivo measurement is taken of an electrical parameter responsive to permeability. Therapeutic agent (S202) may be administered after particles activated for sonoporation are cleared from the circulation, to avoid, when it might exist, adverse interaction between the particles and agent.
Abstract:
A system for providing a perspective for a virtual image includes an intraoperative imaging system (110) having a transducer (146) configured to generate an image data set for a region. A shape sensing enabled device (102) is configured to have at least a portion of the shape sensing enabled device positioned relative to the region. The shape sensing enabled device has a coordinate system registered with a coordinate system of the intraoperative imaging system. An image generation module (148) is configured to render a virtual image (152) of at least a portion of the region using the image data set wherein the virtual image includes a vantage point relative to a position on the shape sensing enabled device.
Abstract:
A system with integrated tracking includes a procedure-specific hardware component (112 or 116) disposed at or near a region of interest. A field generator (114) is configured to generate a field with a field of view covering the region of interest. A mounting device (115) is connected to the field generator and is coupled to the procedure-specific hardware. The field generator is fixedly positioned by the mounting device to permit workflow access to the region of interest without interfering with the field generator and to provide a known position of the field generator relative to the region of interest. A tracking device (110) is configured to be inserted in or near the region of interest to be tracked within the field of view of the field generator to generate tracking data.
Abstract:
A system with integrated tracking includes a procedure-specific hardware component (112 or 116) disposed at or near a region of interest. A field generator (114) is configured to generate a field with a field of view covering the region of interest. A mounting device (115) is connected to the field generator and is coupled to the procedure-specific hardware. The field generator is fixedly positioned by the mounting device to permit workflow access to the region of interest without interfering with the field generator and to provide a known position of the field generator relative to the region of interest. A tracking device (110) is configured to be inserted in or near the region of interest to be tracked within the field of view of the field generator to generate tracking data.
Abstract:
A system for pulmonary elastography includes an ultrasound probe (120) configured to evaluate tissue of a target area by transmitting a signal and receiving a response. A contact device (126) is coupled to the ultrasound probe to provide contact between the ultrasound probe and the tissue. An image processing module (110) is configured to output one or more elastograms according to the response.
Abstract:
A system and method for receiving a medical image, receiving an adaptation of a model of a physical structure, the adaptation relating to the medical image, determining an image quantity of the medical image at each of a plurality of vertices of the adaptation and aggregating the plurality of image quantities to determine an evaluation metric.
Abstract:
An image registration system an endoscope (12) and an endoscope controller (22). In operation, the endoscope (12) generates an intra-operative endoscopic image (14) of a vessel tree (e.g., an arterial tree or a venous tree) within an anatomical region, and the endoscope controller (22) image registers the intra-operative endoscopic image (14) of the vessel tree to a pre-operative three-dimensional image (44) of the vessel tree within the anatomical region. The image registration includes an image matching of a graphical representation of each furcation of the vessel tree within the intra-operative endoscopic image (14) of the vessel tree to a graphical representation of each furcation of the vessel tree within the pre-operative three-dimensional image (44) of the vessel tree.