Abstract:
According to one embodiment, a sensor includes a base body including a first surface including first and second base body regions, a first structure body provided in the first base body region, a second structure body provided in the second base body region, and a control device. The first structure body includes a first movable member configured to vibrate. The vibration of the first movable member includes first and second components. The second structure body includes a second movable member configured to vibrate. The control device includes a controller configured to perform a processing operation. The processing operation includes outputting a second rotation angle, The second rotation angle is obtained by correcting a first rotation angle based on a resonance frequency of the second movable member. The first rotation angle of the first movable member is obtained based on the first component and the second component.
Abstract:
According to one embodiment, a sensor includes a supporter, a first film portion, a first sensing element, and a first magnetic portion. The first film portion is supported by the supporter, is deformable, and includes a first fixed end extending along a first fixed end direction. A first sensing element is fixed to the first film portion, and includes a first magnetic layer, a first opposing magnetic layer provided between the first magnetic layer and the first film portion, and a first intermediate layer provided between the first magnetic layer and the first opposing magnetic layer. A direction from the first opposing magnetic layer toward the first magnetic layer is aligned with a first element direction. The first magnetic portion includes a first end portion extending along a first end portion direction tilted with respect to the first fixed end direction, and overlaps a portion of the supporter.
Abstract:
According to one embodiment, a strain sensing element is provided on a film unit configured to be deformed. The strain sensing element includes a functional layer, a first magnetic layer, a second magnetic layer, and a spacer layer. The functional layer includes at least one of an oxide and a nitride. The second magnetic layer is provided between the functional layer and the first magnetic layer. A magnetization of the second magnetic layer is variable in accordance with a deformation of the film unit. The spacer layer is provided between the first magnetic layer and the second magnetic layer. At least a part of the second magnetic layer is amorphous and includes boron.
Abstract:
According to one embodiment, a pressure sensor includes a film portion, a sensor unit, and a structure body. The film portion has a front surface and is deformable. The sensor unit includes a plurality of sensing elements arranged along the front surface. One of the plurality of sensing elements includes a magnetic layer, a opposing magnetic layer, and a nonmagnetic intermediate layer. The structure body is arranged with the first sensor unit along the arrangement direction of the plurality of sensing elements. The structure body includes a structure body layer, a opposing structure body layer, and a intermediate structure body layer. The structure body layer has at least one of a floating potential with respect to the opposing structure body layer or same potential as a potential of the opposing structure body layer.
Abstract:
According to one embodiment, a pressure sensor includes a film part, and a sensing unit. A circumscribing rectangle circumscribing a configuration of a film surface of the film part has a first side, a second side, a third side connected to one end of the first side and one end of the second side, a fourth side connected to one other end of the first side and one other end of the second side, and a centroid of the circumscribing rectangle. The circumscribing rectangle includes a first region enclosed by the first side, line segments connecting the centroid to the one end of the first side, and to the one other end of the first side. The sensing unit includes sensing elements provided on a portion of the film surface overlapping the first region. Each sensing element includes a first, second magnetic layers, and a spacer layer.
Abstract:
According to one embodiment, a current sensor includes a first sensor element and a power line. The first sensor element includes a first electrode, a second electrode, and a first stacked body. The first stacked body is provided between the first electrode and the second electrode. The first stacked body includes a first magnetic layer, a second magnetic layer and a first intermediate layer. The second magnetic layer is provided between the first magnetic layer and the second electrode. The first intermediate layer is provided between the first magnetic layer and the second magnetic layer. The first intermediate layer is nonmagnetic. A magnetization of the second magnetic layer changes according to a magnetic field generated by a current flowing through the power line. At least a portion of the second magnetic layer is amorphous.
Abstract:
A composite material for magnetic refrigeration is provided. The composite material for magnetic refrigeration includes a magnetocaloric effect material having a magnetocaloric effect; and a heat conductive material dispersed in the magnetocaloric effect material. The heat conductive material is at least one selected from the group consisting of a carbon nanotube and a carbon nanofiber.
Abstract:
According to one embodiment, a sensor includes a stage, a driver, and a detector. The stage includes a first portion and a second portion. The driver is configured to rotate the stage. A rotation axis of the stage passes through the first portion and is along a first direction. A second direction from the first portion to the second portion crosses the first direction. The second portion is configured to rotate along a circumferential direction with the rotation axis as a center when the stage rotating. The detector is provided at the second portion. The detector includes a first detection element configured to detect a first acceleration including a component along the second direction, and a second detection element configured to detect a second acceleration including a component along the first direction.
Abstract:
According to one embodiment, a sensor includes a base body, a first fixed portion, a movable portion, a connecting portion, and a first fixed electrode. The first fixed portion is fixed to the base body. The movable portion is provided around the first fixed portion and includes first to third partial regions. The first partial region is annular. The second partial region is annular. The second partial region is provided between the first partial region and the first fixed portion. The third partial region is annular. The third partial region is provided between the first and second partial regions and centered on the first fixed portion. The third partial region includes a first movable portion electrode. The connecting portion is provided between the first fixed portion and the second partial region. The first fixed electrode is fixed to the based body and faces the first movable portion electrode.
Abstract:
According to one embodiment, a sensor includes a first detection element. The first detection element includes a base body, a first support member fixed to the base body, a conductive first movable member, and a first conductive part fixed to the base body. The first movable member includes first, second, third, fourth and fifth movable parts. In a second direction crossing a first direction from the base body toward the first movable member, the third movable part is between the first and second movable parts. In the second direction, the fourth movable part is between the first and third movable parts. In the second direction, the fifth movable part is between the third and second movable parts. The first movable part is supported by the first support member. The second, third, fourth and fifth movable parts are separated from the base body.