Abstract:
An isolator includes a first electrode; a first insulating portion on the first electrode; a second electrode on the first insulating portion; a second insulating portion around the second electrode; and a first dielectric portion on the second electrode and the second insulating portion. The second insulating portion is provided along a first plane perpendicular to a first direction from the first electrode toward the second electrode. The second electrode including a bottom surface facing the first insulating portion, an upper surface facing the first dielectric portion, a first side surface connected to the bottom surface, and a second side surface connected to the upper surface and the first side surface. The upper surface is wider than the bottom surface in a second direction along the first plane. The first side surface is tilted with respect to the bottom surface and the second side surface.
Abstract:
An insulating device includes a first element, a second element, a first lead, a second lead, and a resin member. The second element is electrically connected to the first element. The first element is mounted on the first lead. The second lead includes a first surface and a second surface, the second surface being at a side opposite to the first surface. The second element is mounted to the first surface. the second lead is arranged to overlap the first element in a direction crossing the second surface of the second lead. The resin member seals the first element, the second element, the first lead, and the second lead.
Abstract:
A method of manufacturing a pressure sensor comprises: above a film portion formed on one surface of a substrate, depositing a first magnetic layer, a second magnetic layer and an intermediate layer between the first and second magnetic layers on one surface of a substrate; removing the deposited layers leaving a part thereof; and removing a part of the substrate from another surface of the substrate. By removing the deposited layers leaving apart thereof, a strain detecting element is formed in a part of a first region, the strain detecting element comprising the first magnetic layer, the second magnetic layer and the intermediate layer. By removing a part of the substrate, a part of the first region of the substrate is removed. In addition, the deposition of the first magnetic layer is performed with the substrate being bended.
Abstract:
According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
Abstract:
According to one embodiment, a strain sensing element includes a film unit being deformable, a first and a second magnetic unit, and a strain sensor. The first magnetic unit is provided on the film unit and is arranged with the film unit in a first direction. The first magnetic unit includes a first magnetic body layer and a first intermediate magnetic layer. The second magnetic unit is provided on the film unit and is arranged with the first magnetic unit in a second direction crossing the first direction. The second magnetic unit includes a second magnetic body layer and a second intermediate magnetic layer. The strain sensor is provided on the film unit between the first magnetic unit and the second magnetic unit. An electrical characteristic of the strain sensor changes according to a deformation of the film unit.
Abstract:
A method of manufacturing a pressure sensor comprises: above a film portion formed on one surface of a substrate, depositing a first magnetic layer, a second magnetic layer and an intermediate layer between the first and second magnetic layers on one surface of a substrate; removing the deposited layers leaving a part thereof; and removing a part of the substrate from another surface of the substrate. By removing the deposited layers leaving a part thereof, a strain detecting element is formed in a part of a first region, the strain detecting element comprising the first magnetic layer, the second magnetic layer and the intermediate layer. By removing a part of the substrate, a part of the first region of the substrate is removed. In addition, the deposition of the first magnetic layer is performed with the substrate being bended.
Abstract:
According to one embodiment, the pressure sensor includes a supporting portion, a film portion, and a strain detecting element. The film portion is supported by the supporting portion. The strain detecting element is disposed on a part of the film portion. The strain detecting element includes a first magnetic layer, a second magnetic layer, and an intermediate layer. A magnetization direction of the first magnetic layer is variable according to a deformation of the film portion. The first magnetic layer has a first facing surface. The second magnetic layer has a second facing surface. The second facing surface faces the first facing surface. The intermediate layer is disposed between the first magnetic layer and the second magnetic layer. An area of the first facing surface is larger than an area of the second facing surface.
Abstract:
According to one embodiment, a strain sensing element to be provided on a deformable substrate, the element includes: a reference layer; a magnetization free layer; and a spacer layer. Magnetization of the magnetization free layer changes in accordance with deformation of the substrate. The spacer layer is provided between the reference layer and the magnetization free layer. The magnetization free layer has: a first magnetic layer; a second magnetic layer; and a magnetic coupling layer. The first magnetic layer is provided in contact with the spacer layer. The second magnetic layer is provided to be separated from the first magnetic layer. The magnetic coupling layer is provided between the first magnetic layer and the second magnetic layer. Magnetization of the first magnetic layer is anti-parallel to magnetization of the second magnetic layer.
Abstract:
A magneto-resistance effect element, including: a fixed magnetization layer of which a magnetization is substantially fixed in one direction; a free magnetization layer of which a magnetization is rotated in accordance with an external magnetic field and which is formed opposite to the fixed magnetization layer; a spacer layer including a current confining layer with an insulating layer and a conductor to pass a current through the insulating layer in a thickness direction thereof and which is located between the fixed magnetization layer and the free magnetization layer; a thin film layer which is located in a side opposite to the spacer layer relative to the free magnetization layer; and a functional layer containing at least one element selected from the group consisting of Si, Mg, B, Al which is formed in or on at least one of the fixed magnetization layer, the free magnetization layer and the thin film layer.
Abstract:
An isolator includes a substrate; a first planar coil provided above the substrate and along a surface of the substrate; a first insulating portion on the first planar coil; a second planar coil on the first insulating portion; and a metal layer above the first insulating portion. The first planar coil, the second planar coil, and the metal layer are arranged in a first direction perpendicular to the surface of the substrate. The first planar coil and the second planar coil each having a center and an outer perimeter in a second direction along the surface of the substrate. A distance in the second direction from the center of the first planar coil to the outer perimeter of the first planar coil is less than a distance in the second direction from the center of the second planar coil to the outer perimeter of the second planar coil.