Abstract:
Power sourcing equipment (PSE) and an energy saving method for Power over Ethernet are provided. The PSE includes: a low-power detection component, configured to: detect a power supply port when being connected to the power supply port; and send a first instruction when the power supply port is connected to a valid powered device PD, to instruct a control switch to connect a PSE chip and the power supply port and disconnect the low-power detection component from the power supply port, and instruct a power switch to connect the PSE chip and a power supply; the control switch, configured to: according to the first instruction, connect the PSE chip and the power supply port, and disconnect the low-power detection component from the power supply port; and the power switch, configured to connect the PSE chip to the power supply port according to the first instruction.
Abstract:
A network device includes a power system, a processor, a power sourcing equipment PSE chip coupled to a first forward power supply port, and a first powered device PD chip coupled to a first reverse power receiving port. A first powered device is connected to the first forward power supply port and the first reverse power receiving port. When detecting that a power failure occurs on the network device, the processor instructs the first PD chip to draw power from the first powered device; the first PD chip draws the power from the first powered device through the first reverse power receiving port, and supplies the obtained power to the power system. Therefore, when a power failure occurs, the network device can continue to obtain power and work properly when the power failure occurs.
Abstract:
A port adaptation method applied to a network device including a port adaptation apparatus includes probing whether the first port and the second port are connected to power sourcing equipment, and maintaining or switching one of the first port and the second port that is connected to power sourcing equipment as, or to, a powered state, and a state of the other port as, or to, a powering state.
Abstract:
This application discloses an energy-saving power sourcing method. Power sourcing equipment receives an input voltage of a powered device fed back by the powered device, and adjusts, based on the input voltage, a power sourcing voltage that is output to the powered device, so that the input voltage of the powered device is a maximum voltage, thereby reducing a link loss and saving electric power resources of the power sourcing equipment.
Abstract:
A power over Ethernet (PoE) power supplying method where power sourcing equipment (PSE) and a powered device exchange link layer discovery protocol data units (LLDPDUs). Each of the LLDPDUs includes two power values. Each of the power values indicates requested or allocated power for one of two sets of cable pairs of the Ethernet twisted pair connecting the PSE and the powered device. Accordingly, the supplied powers to the powered device at sets of cable pairs are independent from each other.
Abstract:
A power sourcing equipment (PSE) chip controls a powering channel of the PSE chip according to a value stored in a first register; the PSE chip changes, in response to a second instruction, the value stored in the first register into a calculated value, where the second instruction includes a second slave address and a second data byte, the second slave address is a virtual address of a virtual powering group, and the calculated value is a result obtained by calculation according to the second data byte and a channel indication value that is of the virtual powering group and stored in the PSE chip. Information indicating whether a powering channel is added to a virtual powering group is stored in a PSE chip, so that powering channels added to a virtual powering group can be controlled at a time.
Abstract:
A connection manner identification method includes power sourcing equipment separately sending load adjustment indications to powered devices by using data ports, where each load adjustment indication in the load adjustment indications indicates a corresponding powered device to adjust a load. The powered devices are separately connected to power supply ports of the power sourcing equipment by using power supply cables, and the powered devices are separately connected to the data ports of the power sourcing equipment by using data cables. The power sourcing equipment obtains output power changes of the power supply ports caused by load adjustment of the powered devices, and the power sourcing equipment determines, based on the output power changes, a first data port and a power supply port that are connected to a same powered device in the powered devices.
Abstract:
A port adaptation method applied to a network device including a port adaptation apparatus includes probing whether the first port and the second port are connected to power sourcing equipment, and maintaining or switching one of the first port and the second port that is connected to power sourcing equipment as, or to, a powered state, and a state of the other port as, or to, a powering state.
Abstract:
A network device probes whether a first port of the network device is coupled to power sourcing equipment, and when probing that the first port is coupled to power sourcing equipment, maintain or change the first port to a powered state, and lock the first port as a power drawing port, or when probing that the first port is decoupled to power sourcing equipment, and the network device has a power supply for supplying power, change the first port to a powering state. In this way, the first port may adaptively serve as a power drawing port or a power sourcing port according to a coupled device such that manually distinguished a port during device interconnection is not necessary and a coupling error rate is reduced.
Abstract:
A power over Ethernet method includes: performing, by power sourcing equipment, a plurality of detections by using an Ethernet port, connected to an intermediate device, of the power sourcing equipment, where a quantity of detections performed by the power sourcing equipment is equal to a quantity of power supply ports of the intermediate device; and if at least one detection result of the plurality of detections is effective, sending, by the power sourcing equipment, a power supply indication to the intermediate device, and supplying power to the connection port. In this way, the power sourcing equipment can supply power across the intermediate device to a powered device connected to the intermediate device, and a power loss caused by voltage conversion is avoided.