Abstract:
A HARQ frame data structure and methods of transmitting and receiving with HARQ in systems using blind detection. In one embodiment, a method of transmitting over a channel using HARQ includes transmitting a first frame containing data toward a blind detection receiver, and transmitting a second frame containing at least a portion of the data and information about the first frame toward the blind detection receiver.
Abstract:
Methods and devices for reducing traffic over a wireless link through the compression or suppression of high layer packets carrying predictable background data prior to transportation over a wireless link. The methods include intercepting application layer protocol packets carrying the predictable background data. In embodiments where the background data is periodic in nature, the high layer packets may be compressed into low-layer signaling indicators for communication over a low-layer control channel (e.g., an on off keying (OOK) channel). Alternatively, the high layer packets may be suppressed entirely (not transported over the wireless link) when a receiver side daemon is configured to autonomously replicate the periodic background nature according to a projected interval. In other embodiments, compression techniques may be used to reduce overhead attributable to non-periodic background data that is predictable in context.
Abstract:
An embodiment method includes selecting, by a network infrastructure manager, a first user equipment (UE) as a destination UE and selecting a second UE as a relay UE for the destination UE. The method further includes negotiating installation of a virtual range extender (vREX) UE on the destination UE, and negotiating installation of a vREX forwarding agent (FA) on the relay UE. The vREX FA is configured to act as a FA for the vREX UE.
Abstract:
An embodiment method of network zoning for a software defined network (SDN) includes determining a number, K, of zones according to at least one zone quantity parameter. Given K, a plurality of network nodes of the SDN are partitioned into K zones. The K zones are respectively assigned K SDN controllers. The K SDN controllers are configured to make traffic engineering decisions and carry out distributed network optimization for respective assigned network nodes among the plurality of network nodes.
Abstract translation:用于软件定义网络(SDN)的网络分区的实施例方法包括根据至少一个区域数量参数来确定区域的数量K。 给定K,SDN的多个网络节点被划分为K个区域。 K个区分别分配了K个SDN控制器。 K SDN控制器被配置为进行流量工程决策,并对多个网络节点之间的相应分配的网络节点进行分布式网络优化。
Abstract:
System and method embodiments are provided for pausing data transmission in a full-duplex wireless network. Embodiments eliminate the deadlocks in the full duplex MAC layer and improve the system efficiency. In an embodiment, a method in a wirelessly enabled and full duplex enabled network component for pausing an ongoing data transmission includes beginning a transmission, with the network component, of first data to a first station; determining, with the network component, that transmission of a second data to a second station is required before completion of the transmission of the first data to the first station; transmitting, with the network component, a pause indicator to the first station notifying the first station that transmission of the first data will be paused; transmitting, with the network component, the second data to the second station; and resuming transmitting, with the network component, the first data to the first station.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
A method for agile wireless access network includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
Embodiments are provided for a framework for networks with software defined protocols (SDP) network nodes. The embodiments include a SDM controller component for managing and controlling a data plane protocol for SDP network nodes. The SDP controller also interacts with a software defined networking (SDN) controller for determining one or more paths in a network including the SDP network nodes. The SDP controller is configured to determining a break-down of data plane process functionality into a plurality of basic process function blocks for a service, traffic flow, or virtual network in accordance with network component capabilities or quality of service/experience requirement. A workflow and status information are also determined for one or more network components along a path allocated, by the SDN controller. The workflow and status information are indicated to the one or more components, which are configured to implement the workflow using the basic process function blocks.