Abstract:
Methods and systems are disclosed for cross-validating a second sensor with a first sensor. Cross-validating the second sensor may include obtaining sensor readings from the first sensor and comparing the sensor readings from the first sensor with sensor readings obtained from the second sensor. In particular, the comparison of the sensor readings may include comparing state information about a vehicle detected by the first sensor and the second sensor. In addition, comparing the sensor readings may include obtaining a first image from the first sensor, obtaining a second image from the second sensor, and then comparing various characteristics of the images. One characteristic that may be compared are object labels applied to the vehicle detected by the first and second sensor. The first and second sensors may be different types of sensors.
Abstract:
A method and apparatus is provided for controlling the operation of an autonomous vehicle. According to one aspect, the autonomous vehicle may track the trajectories of other vehicles on a road. Based on the other vehicle's trajectories, the autonomous vehicle may generate a representative trajectory. Afterwards, the autonomous vehicle may change at least one of its speed or direction based on the representative trajectory.
Abstract:
Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
Abstract:
Aspects of the disclosure relate generally to speed control in an autonomous vehicle. For example, an autonomous vehicle may include a user interface which allows the driver to input speed preferences. These preferences may include the maximum speed above the speed limit the user would like the autonomous vehicle to drive when other vehicles are present and driving above or below certain speeds. The other vehicles may be in adjacent or the same lane the vehicle, and need not be in front of the vehicle.
Abstract:
Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
Abstract:
Aspects of the disclosure relate generally to detecting discrete actions by traveling vehicles. The features described improve the safety, use, driver experience, and performance of autonomously controlled vehicles by performing a behavior analysis on mobile objects in the vicinity of an autonomous vehicle. Specifically, an autonomous vehicle is capable of detecting and tracking nearby vehicles and is able to determine when these nearby vehicles have performed actions of interest by comparing their tracked movements with map data.
Abstract:
Aspects of the disclosure relate generally to notifying a pedestrian of the intent of a self-driving vehicle. For example, the vehicle may include sensors which detect an object such as a pedestrian attempting or about to cross the roadway in front of the vehicle. The vehicle's computer may then determine the correct way to respond to the pedestrian. For example, the computer may determine that the vehicle should stop or slow down, yield, or stop if it is safe to do so. The vehicle may then provide a notification to the pedestrian of what the vehicle is going to or is currently doing. For example, the vehicle may include a physical signaling device, an electronic sign or lights, a speaker for providing audible notifications, etc.
Abstract:
A roadgraph may include a graph network of information such as roads, lanes, intersections, and the connections between these features. The roadgraph may also include one or more zones associated with particular rules. The zones may include locations where driving is typically challenging such as merges, construction zones, or other obstacles. In one example, the rules may require an autonomous vehicle to alert a driver that the vehicle is approaching a zone. The vehicle may thus require a driver to take control of steering, acceleration, deceleration, etc. In another example, the zones may be designated by a driver and may be broadcast to other nearby vehicles, for example using a radio link or other network such that other vehicles may be able to observer the same rule at the same location or at least notify the other vehicle's drivers that another driver felt the location was unsafe for autonomous driving.