Abstract:
A system includes a control unit having a processor and a communication interface. The communication interface is configured to communicate with one or more charging stations that are electrically coupled to receive electrical power from a power distribution grid and that are configured to selectively charge one or more energy storage devices connected to the charging stations. The processor is configured to generate first control signals for communication by the communication interface to the one or more charging stations to control transfer of reactive and/or active power from the charging stations to the power distribution grid. The control signals are generated based at least in part on a load cycle profile of one or more electric machines electrically coupled to the power distribution grid.
Abstract:
A charging system for a vehicle includes a first energy storage device, a first DC-DC converter coupled between a DC bus and the first energy storage device, and a controller. The controller is programmed to identify charging parameters of a charging source coupleable to the first energy storage device through the first DC-DC converter, apply an optimization algorithm to iteratively define a charging power allocation to charge the first energy storage device using the charging source, and selectively control the first DC-DC converter to recharge the first energy storage device in accordance with the charging power allocation. The charging power allocation optimizes at least one of a state of charge (SOC) and a state of health (SOH) of the first energy storage device.
Abstract:
A vehicle propulsion system includes a plurality of power sources coupled to a final drive of the vehicle propulsion system. A controller is programmed to determine a desired power demand from the power sources and operate a number of the power sources to produce the desired power demand. The controller identifies a least efficient power source of the power sources and controls the least efficient power source to produce power at an optimum operating point of the least efficient power source. The controller also identifies a power output of the least efficient power source corresponding to the optimum operating point, compares the power output of the least efficient power source to the desired power demand, identifies a remaining power demand from the comparison, and controls another power source to produce the remaining power demand.
Abstract:
A vehicle propulsion system includes a first bi-directional DC-DC converter coupled to a first DC bus, an energy storage system comprising at least one energy storage unit coupled to the first bi-directional DC-DC converter, a first DC-to-AC inverter coupled to the first DC bus, and a first electromechanical device coupled to the first DC-to-AC inverter. A controller is programmed to determine a real-time operating speed of the first electromechanical device, compare the real-time operating speed of the first electromechanical device to a scheduled speed of the first electromechanical device, and selectively control the first bi-directional DC-DC converter to shift a voltage of the first DC bus based on the comparison.
Abstract:
A control system for controlling the supply of power from an energy storage system to a DC bus of a vehicle propulsion system is disclosed herein. The control system includes a controller programmed to monitor real-time operating parameters of a plurality of energy storage units of the energy storage system, access degradation models for the plurality of energy storage units, and optimize usage of the plurality of energy storage units during real-time operation of the vehicle propulsion system based on the degradation models.
Abstract:
A charging system for a vehicle includes a first energy storage device, a first DC-DC converter coupled between a DC bus and the first energy storage device, and a controller. The controller is programmed to identify charging parameters of a charging source coupleable to the first energy storage device through the first DC-DC converter, apply an optimization algorithm to iteratively define a charging power allocation to charge the first energy storage device using the charging source, and selectively control the first DC-DC converter to recharge the first energy storage device in accordance with the charging power allocation. The charging power allocation optimizes at least one of a state of charge (SOC) and a state of health (SOH) of the first energy storage device.
Abstract:
A system includes a control unit having a processor and a communication interface. The communication interface is configured to communicate with one or more charging stations that are electrically coupled to receive electrical power from a power distribution grid and that are configured to selectively charge one or more energy storage devices connected to the charging stations. The processor is configured to generate first control signals for communication by the communication interface to the one or more charging stations to control transfer of reactive and/or active power from the charging stations to the power distribution grid. The control signals are generated based at least in part on a load cycle profile of one or more electric machines electrically coupled to the power distribution grid.
Abstract:
A method implemented using at least one of the processor includes disposing a power source on a vehicle, wherein the power source is configured to power auxiliary loads of the aircraft. The method also includes connecting a power source disposed on a vehicle configured to engage an aircraft for ground operation, to auxiliary loads of the aircraft via an on-board power system. The method also includes performing energy management of the aircraft during the period of ground operation. The method further includes disconnecting the power source when an alternate electrical power is available to the on-board power system.
Abstract:
A modular power conversion device includes at least one first-type energy storage device (ESD) configured to induce a first direct current (DC) voltage, and at least one active power link module (APLM) string coupled to the at least one first-type ESD. The at least one APLM string includes a plurality of APLMs coupled to each other. Each APLM of the plurality of APLMs has a plurality of switching devices including a first switching device and a second switching device coupled to each other in electrical series. Each APLM of the plurality of APLMs also has at least one second-type ESD coupled in electrical parallel with both of the first switching device and the second switching device. The at least one second-type ESD is configured to induce a second DC voltage.
Abstract:
A vehicle propulsion system includes a plurality of power sources coupled to a final drive of the vehicle propulsion system. A controller is programmed to determine a desired power demand from the power sources and operate a number of the power sources to produce the desired power demand. The controller identifies a least efficient power source of the power sources and controls the least efficient power source to produce power at an optimum operating point of the least efficient power source. The controller also identifies a power output of the least efficient power source corresponding to the optimum operating point, compares the power output of the least efficient power source to the desired power demand, identifies a remaining power demand from the comparison, and controls another power source to produce the remaining power demand.