摘要:
A technique for forming films of material (14) from a donor substrate (10). The technique has a step of introducing gas-forming particles (12) through a surface of a donor substrate (10) to a selected depth underneath the surface. The gas-forming particles form a layer of microbubbles within the substrate. A global heat treatment of the substrate then creates a pressure effect to separate a thin film of material from the substrate. Additional gas-forming particles are introduced into the donor substrate and a second thin film of material is then separated from the donor substrate. In a specific embodiment, the gas-forming particles are implanted using a plasma immersion ion implantation method.
摘要:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
摘要:
A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN or SiC. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
摘要:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
摘要:
A technique for forming a gettering layer in a wafer made using a controlled cleaving process. The gettering layer can be made by implanting using beam line or plasma immersion ion implantaion, or made by forming a film of material such as polysilicon by way of chemical vapor deposition. A controlled cleaving process is used to form the wafer, which is a multilayered silicon on insulator substrate. The gettering layer removes and/or attracts impurities in the wafer, which can be detrimental to the functionality and reliability of an integrated circuit device made on the wafer.
摘要:
A technique for forming films of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define donor substrate material (12) above the selected depth. Energy is provided to a selected region of the substrate to cleave a thin film of material from the donor substrate. Particles are introduced again into the donor substrate underneath a fresh surface of the donor substrate. A second thin film of material is then cleaved from the donor substrate.
摘要:
A technique for forming a film of material having active devices from a donor substrate. The technique has a step of introducing energetic particles in a selected manner through a surface and active devices of a donor substrate a selected depth underneath the active devices, where the particles have a relatively high concentration to define a donor substrate material above the selected depth. The surface of the donor substrate is attached to a release layer on a transfer substrate. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate at the selected depth, whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate. The transfer substrate holds the cleaved material and is used to transfer the cleaved material with active devices onto a target substrate.
摘要:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
摘要:
A process for forming a novel substrate material. The process includes providing a substrate, e.g., silicon wafer. The substrate has a stressed layer at a selected depth underneath a surface of the substrate. The stressed layer is at the selected depth to define a substrate material to be removed above the selected depth. The stressed layer comprises a deposited layer and an implanted region. The substrate also comprises a device layer overlying the stressed layer. The process includes forming a plurality of integrated circuit devices on the substrate material. A thermal treatment process at a temperature greater than about 400 degrees Celsius is included in the process of forming the integrated circuit devices. Next, the process includes providing energy to a selected region of the substrate to initiate a controlled cleaving action at the selected depth in the substrate, whereupon the cleaving action is made using a propagating cleave front to free a portion of the material to be removed from the substrate.
摘要:
A gettering layer in a silicon-on-insulator wafer. The gettering layer may be formed by implanting gas-forming particles or precipitate-forming particles beneath the active region of the silicon layer and thermally treating the gas-forming ions to produce microbubbles or precipitates within the silicon layer. The microbubbles an/or precipitates create trapping sites for mobile impurity species, thus gettering the impurities. In another embodiment, a polysilicon layer is formed on a donor silicon wafer prior to separating a thin layer of silicon from the donor wafer. The thin layer of silicon is bonded to a backing wafer, the polysilicon layer provides a gettering layer between the active silicon and the backing wafer.