Abstract:
The present invention discloses an array substrate and a method for preparing the same, and a display device. The array substrate comprises a substrate, and a thin-film transistor and a passivation layer formed on a side of the substrate, and the array substrate is divided into a reflective region and a transmissive region, wherein an insulating layer is formed on the reflective region on a side of the passivation layer that is far from the substrate, and a nanoparticle layer for diffuse reflecting an incident light is formed on a side of the insulating layer that is far from the substrate. Not only the viewing angle of the array substrate is enlarged, but also the performances of the array substrate such as transmittance, contrast and dark-state uniformity are guaranteed, thus the present invention is especially applicable for display devices for large-scale outdoor display.
Abstract:
The present disclosure provides a display panel, an operating method thereof and a display device. The display panel includes first substrate and second substrate disposed opposite to each other, liquid crystal layer disposed between first substrate and second substrate, orthogonal polarization layer disposed on a side of first substrate facing towards liquid crystal layer, and first absorbent layer disposed on a side of first substrate facing away from liquid crystal layer. When no electric field is loaded, both liquid crystal layer and orthogonal polarization layer transmit light with first polarization direction. When electric field is loaded, liquid crystal layer converts incident light with first polarization direction into emergent light with second polarization direction which is orthogonal to first polarization direction, and the orthogonal polarization layer reflects the light with the second polarization direction. The first absorbent layer absorbs the light incident thereon.
Abstract:
A liquid crystal display (LCD) panel and an LCD device are disclosed. The LCD panel comprises a plurality of pixel units. Each pixel unit includes an upper substrates, a lower substrate and a liquid crystal layer disposed between the upper substrate and the lower substrate. A first common electrode, an insulating layer and a pixel electrode are sequentially disposed on one side of the lower substrate facing the liquid crystal layer. The pixel electrode includes a plurality of first electrodes and second electrodes which have strip structures and are alternately distributed. A second common electrode is disposed on one side of the upper substrate facing the liquid crystal layer. The LCD panel can improve the response speed of liquid crystal molecules and increase the transmittance of the liquid crystal layer when the pixel units are electrified.
Abstract:
An OLED display panel comprises an OLED substrate, an encapsulation cover plate arranged opposite to the OLED substrate, and an adhesive film provided between the OLED substrate and the encapsulation cover plate, and further comprises a moistureproof material capable of absorbing moisture; the moistureproof material is provided in the adhesive film. The embodiments of the present invention eliminate the volume increase of the OLED display panel. A method for packaging the OLED display panel and a display device comprising the OLED display panel are also provided.
Abstract:
The present application discloses a display panel having an inter-subpixel region and a subpixel region. The display panel includes a first display substrate and a second display substrate facing each other; and a spacer layer having a plurality of spacers for maintaining a spacing between the first display substrate and the second display substrate. The first display substrate includes a first base substrate; and a black matrix in the inter-subpixel region and on the first base substrate, and including a linear polarizer layer in a first region of the inter-subpixel region and outside the subpixel region. An orthographic projection of the linear polarizer layer on the first base substrate substantially covers projections of the plurality of spacers on the first base substrate.
Abstract:
A pixel circuit, a method for driving the same, a display panel and a display device are provided. The pixel circuit includes a driver transistor, a data writing sub-circuit, an initializing sub-circuit, a voltage prewriting sub-circuit, a threshold compensating sub-circuit, a first light-emission control sub-circuit, a second light-emission control sub-circuit, a capacitor, and a light-emitting element. The voltage prewriting sub-circuit pre-stores voltage of a light-emission supply voltage terminal into the capacitor before the light-emitting element emits light, the magnitude of light-emission current is dependent upon the voltage of the light-emission supply voltage terminal, and independent of the voltage of the first voltage source.
Abstract:
A metal wire grid polarization plate and a manufacturing method thereof, a display panel and a display device are provided. The metal wire grid polarization plate includes a substrate, a light absorption wire grid and a metal wire grid. The light absorption wire grid is disposed on a side of the substrate, and the metal wire grid covers the light absorption wire grid.
Abstract:
The present disclosure provides a display panel, an operating method thereof and a display device. The display panel includes first substrate and second substrate disposed opposite to each other, liquid crystal layer disposed between first substrate and second substrate, orthogonal polarization layer disposed on a side of first substrate facing towards liquid crystal layer, and first absorbent layer disposed on a side of first substrate facing away from liquid crystal layer. When no electric field is loaded, both liquid crystal layer and orthogonal polarization layer transmit light with first polarization direction. When electric field is loaded, liquid crystal layer converts incident light with first polarization direction into emergent light with second polarization direction which is orthogonal to first polarization direction, and the orthogonal polarization layer reflects the light with the second polarization direction. The first absorbent layer absorbs the light incident thereon.
Abstract:
A curved surface LCD panel and a display device are disclosed. The curved surface LCD panel includes an array substrate and an opposite substrate parallel with each other and curved in a same direction, wherein edge zones of the array substrate and the opposite substrate having plural optical retardation zones, each of the optical retardation zones on the array substrate being corresponding to one of the optical retardation zones on the opposite substrate, and two corresponding optical retardation zones constituting a zone group; a LC layer located between the array substrate and the opposite substrate; and an optical compensation film attached at each of the optical retardation zones in at least one zone group; wherein the optical compensation film being perpendicular to an optical axis of the optical retardation zone attached with the optical compensation film and having an equal optical retardation with the optical retardation zone.
Abstract:
A curved surface ADS display panel and a manufacturing method thereof are disclosed. The curved surface ADS display panel includes a first substrate; a second substrate facing the first substrate, wherein the second substrate has a first surface far away from the first substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; and a glass light guide plate completely adhered on the first surface of the second substrate. Also, the glass light guide plate has a thickness of D1, and the first substrate, the liquid crystal layer, and the second substrate have a total thickness of D2, wherein |D1−31 D2|/D1≤30%.