Abstract:
Embodiments of the present disclosure generally relate to hardmasks and to processes for forming hardmasks by plasma-enhanced chemical vapor deposition (PECVD). In an embodiment, a process for forming a hardmask layer on a substrate is provided. The process includes introducing a substrate to a processing volume of a PECVD chamber, the substrate on a substrate support, the substrate support comprising an electrostatic chuck, and flowing a process gas into the processing volume within the PECVD chamber, the process gas comprising a carbon-containing gas. The process further includes forming, under plasma conditions, an energized process gas from the process gas in the processing volume, electrostatically chucking the substrate to the substrate support, depositing a first carbon-containing layer on the substrate while electrostatically chucking the substrate, and forming the hardmask layer by depositing a second carbon-containing layer on the substrate.
Abstract:
Embodiments of the disclosure generally relate to a method for dry stripping a boron carbide layer deposited on a semiconductor substrate. In one embodiment, the method includes loading the substrate with the boron carbide layer into a pressure vessel, exposing the substrate to a processing gas comprising an oxidizer at a pressure between about 500 Torr and 60 bar, heating the pressure vessel to a temperature greater than a condensation point of the processing gas and removing one or more products of a reaction between the processing gas and the boron carbide layer from the pressure vessel.
Abstract:
Embodiments of the disclosure generally relate to a method of processing a semiconductor substrate at a temperature less than 250 degrees Celsius. In one embodiment, the method includes loading the substrate with the deposited film into a pressure vessel, exposing the substrate to a processing gas comprising an oxidizer at a pressure greater than about 2 bars, and maintaining the pressure vessel at a temperature between a condensation point of the processing gas and about 250 degrees Celsius.
Abstract:
Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
Abstract:
Techniques are disclosed for methods and apparatuses of an electrostatic chuck suitable for operating at high operating temperatures. In one example, a substrate support assembly is provided. The substrate support assembly includes a substantially disk-shaped ceramic body having an upper surface, a cylindrical sidewall, and a lower surface. The upper surface is configured to support a substrate thereon for processing the substrate in a vacuum processing chamber. The cylindrical sidewall defines an outer diameter of the ceramic body. The lower surface is disposed opposite the upper surface. An electrode is disposed in the ceramic body. A circuit is electrically connected to the electrode. The circuit includes a DC chucking circuit, a first RF drive circuit, and a second RF dive circuit. The DC chucking circuit, the first RF drive circuit and the second RF drive circuit are electrically coupled with the electrode.
Abstract:
Embodiments described herein generally provide a method for filling features formed on a substrate. In one embodiment, a method for selectively forming a silicon oxide layer on a substrate is provided. The method includes selectively depositing a silicon oxide layer within a patterned feature formed on a surface of a substrate, wherein the patterned feature comprises one or more sidewalls and a deposition surface at a bottom of the patterned feature, the one or more sidewalls comprise a silicon oxide, a silicon nitride, or a combination thereof, the deposition surface essentially consists of silicon, and the selectively deposited silicon oxide layer is formed on the deposition surface by flowing tetraethyl orthosilicate (TEOS) and ozone over the patterned feature.
Abstract:
Implementations of the present disclosure generally relate to methods for forming thin films in high aspect ratio feature definitions. In one implementation, a method of processing a substrate in a process chamber is provided. The method comprises flowing a boron-containing precursor comprising a ligand into an interior processing volume of a process chamber, flowing a nitrogen-containing precursor comprising the ligand into the interior processing volume and thermally decomposing the boron-containing precursor and the nitrogen-containing precursor in the interior processing volume to deposit a boron nitride layer over at least one or more sidewalls and a bottom surface of a high aspect ratio feature definition formed in and below a surface of a dielectric layer on the substrate.
Abstract:
Methods for cleaning a processing chamber to remove amorphous carbon containing residuals from the processing chamber are provided. The cleaning process utilizes a low frequency RF bias power during the cleaning process. In one embodiment, a method of cleaning a processing chamber includes supplying a cleaning gas mixture into a processing chamber, applying a RF bias power of about 2 MHz or lower to a substrate support assembly disposed in the processing chamber to form a plasma in the cleaning gas mixture in the processing chamber, and removing deposition residuals from the processing chamber.
Abstract:
Implementations described herein generally relate to methods for dielectric gap-fill. In one implementation, a method of depositing a silicon oxide layer on a substrate is provided. The method comprises introducing a cyclic organic siloxane precursor and an aliphatic organic siloxane precursor into a deposition chamber, reacting the cyclic organic siloxane precursor and the aliphatic organic siloxane precursor with atomic oxygen to form the silicon oxide layer on a substrate positioned in the deposition chamber, wherein the substrate is maintained at a temperature between about 0° C. and about 200° C. as the silicon oxide layer is formed, wherein the silicon oxide layer is initially flowable following deposition, and wherein a ratio of a flow rate of the cyclic organic siloxane precursor to a flow rate of the aliphatic organic siloxane precursor is at least 2:1 and curing the deposited silicon oxide layer.
Abstract:
Embodiments of the invention generally relate to methods of curing a carbon/silicon-containing low k material. The methods generally include delivering a deposition precursor to the processing region, the deposition precursor comprising a carbon/silicon-containing precursor, forming a remote plasma in the presence of an oxygen containing precursor, delivering the activated oxygen containing precursor to the deposition precursor to deposit a carbon/silicon-containing low k material on the substrate and curing the carbon/silicon-containing low k material in the presence of a carbon oxide gas.