Abstract:
Custom antenna structures may be used to improve antenna performance and to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may include an antenna tuning element and conductive structures formed from portions of a peripheral conductive housing member and other conductive antenna structures. The antenna tuning element may be connected across a gap in the peripheral conductive housing member. The custom antenna structures may be used to couple the antenna tuning element to a fixed custom location on the peripheral conductive housing member to help satisfy design criteria and to compensate for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance. Custom antenna structures may include springs and custom paths on dielectric supports.
Abstract:
A unitary elastomeric structure comprising: an annular body having an inward facing annular channel formed in an upper portion of the body and an annular sealing structure formed in a lower portion of the body, wherein the annular sealing structure is concentric with and radially within the annular channel; and a plurality of grommets disposed radially around and integrally formed with the annular body, wherein each grommet has opposing upper and lower surfaces and a bore extending through the grommet between the upper and lower surfaces.
Abstract:
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
Abstract:
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
Abstract:
An electronic device that includes a vision system carried by a bracket assembly is disclosed. The vision system may include a first camera module that captures an image of an object, a light emitting element that emits light rays toward the object, and a second camera module that receives light rays reflected from the object. The light rays may include infrared light rays. The bracket assembly is designed not only carry the aforementioned modules, but to also maintain a predetermined and fixed separation between the modules. The bracket assembly may form a rigid, multi-piece bracket assembly to prevent bending, thereby maintaining the predetermined separation. The electronic device may include a transparent cover designed to couple with a housing. The transparent cover includes an alignment module designed to engage a module and provide a moving force that aligns the bracket assembly and the modules to a desired location in the housing.
Abstract:
An electronic device that includes a vision system carried by a bracket assembly is disclosed. The vision system may include a first camera module that captures an image of an object, a light emitting element that emits light rays toward the object, and a second camera module that receives light rays reflected from the object. The light rays may include infrared light rays. The bracket assembly is designed not only carry the aforementioned modules, but to also maintain a predetermined and fixed separation between the modules. The bracket assembly may form a rigid, multi-piece bracket assembly to prevent bending, thereby maintaining the predetermined separation. The electronic device may include a transparent cover designed to couple with a housing. The transparent cover incudes an alignment module designed to engage a module and provide a moving force that aligns the bracket assembly and the modules to a desired location in the housing.
Abstract:
Coatings for filling cracks within anodic films formed from, for example, a laser marking process are described. The cracks generally have widths of nanometers in scale and can extend from an external surface of an anodic film to an underlying metal substrate. The coatings fill the cracks to prevent liquid and contaminants from entering the cracks and reaching the metal substrate, thereby preventing corrosion of the underlying metal substrate. The coatings can be hydrophobic such that water is wicked away from the cracks. In some cases, the coatings are fluoropolymer coatings. Methods include spray-on techniques that provide a thin and uniform layer of the coating. The spray-on technique can be configured to spray on a fluoropolymer precursor onto the anodic film such that the fluoropolymer precursor diffuses into and polymerizes into the fluoropolymer coating within the cracks.
Abstract:
An electronic device having one or more magnets disposed within it (e.g., such as in a speaker) is equipped with a magnetic shield that attenuates magnetic fields propagating outside of the electronic device. The magnetic shield may be placed within the device such that it redirects the magnetic fields to contain them better within the one or more magnets, resulting in improved magnetic efficiency. In further embodiments, the magnetic shield may also function as a structural part of the electronic device and/or an electronic component with in the electronic device.
Abstract:
Systems and methods for securing components of an electronic device are provided. In some embodiments, the electronic device may include a housing having an opening, a cover resting on a portion of the electronic device in a first cover position within the opening, and a lock component configured to move within the housing from a first lock position to a second lock position for securing the cover in the first cover position.
Abstract:
Electrical components are mounted on a printed circuit in an electronic device housing. Shielding can structures may include a sheet metal shield can layer with a conductive gasket. The printed circuit may have an opening. A screw passes through the opening in the printed circuit and openings in the conductive gasket and sheet metal shield can layer to secure the shielding can structures to the housing. When secured, a lip in the gasket lies between the printed circuit substrate and the housing. The gasket may be formed from conductive elastomeric material. A shield can lid and a flexible printed circuit may be embedded within conductive elastomeric material that provides a thermal conduction path to dissipate heat from electrical components under the lid. Shield can members that are located on opposing sides of a bend in a flexible printed circuit substrate may be coupled by a conductive elastomeric bridging structure.