Abstract:
According to the present invention, a first p-side electrode 7A made of metal which is provided with regularly arranged holes 10 having a diameter smaller than a laser oscillation wavelength and a second p-side electrode 7B arranged around the periphery of the first p-type electrode 7A are used as a p-side mirror of a surface-emitting laser. Light in a resonator formed of a p-side electrode 7 and an n-type mirror 2 is first converted to a surface plasmon and then reconverted to the light by the p-side electrode 7A, and then emitted outside the resonator. This improves the light transmittance, thereby permitting use of metal which is considered to have inherently low light transmittance as a material for the p-side electrode 7. If the p-side electrode 7 is made of metal, operating voltage is reduced and heat dissipation improves, without causing a spike in a valence band, which occurs when a semiconductor layer is used. Further, due to the nonlinear effect of the mirror, optical feedback to the inside of the resonator is controlled, whereby a laser device with excellent noise characteristic is obtained.
Abstract:
A semiconductor laser device including: a semiconductor substrate of a first conductivity type; a cladding layer of the first conductivity type provided on the semiconductor substrate; an active layer provided on the cladding layer of the first conductivity type, the active layer having a super-lattice structure including a disordered region in a vicinity of at least one cavity end face; a first cladding layer of a second conductivity type provided on the active layer; an etching stop layer of the second conductivity type provided on the first cladding layer; and a second cladding layer of the second conductivity type provided on the etching stop layer, the second cladding layer forming a ridge structure, the ridge structure extending along a cavity length direction and having a predetermined width. A concentration of an impurity in the etching stop layer in the vicinity of the at least one cavity end face is greater than a concentration of the impurity in the interior of a cavity and equal to or smaller than about 2×1018 cm−3.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.
Abstract:
The present invention provides a thermal transfer receiving sheet obtained by sequentially forming a hollow particle-containing intermediate layer and an image receiving layer on one surface of a sheet-like support mainly comprising cellulose pulp, wherein the moisture content of the entire thermal transfer receiving sheet is from 2 to 8 mass % and the moisture permeability of the entire receiving sheet is 400 g/m2·day or less; and a production method thereof. The present invention further provides a thermal transfer receiving sheet obtained by sequentially forming a hollow particle-containing intermediate layer and an image receiving layer on one surface of a sheet-like support mainly comprising cellulose pulp and providing a backside layer on another surface of the support, wherein the backside layer mainly comprises an acryl-based resin having a glass transition point (Tg) of 45° C. or less and contains a resin filler having an average particle diameter of 5 to 22 μm and the Bekk smoothness according to JIS P 8119 on the backside layer surface is 100 seconds or less.
Abstract:
A semiconductor light emitting device includes: a cavity including a mesa formed over a substrate, the mesa having an active layer and being isolated by a recess formed around the mesa; and a resin layer with which the recess is filled. On the upper surface of the cavity, which is a light output surface through which light emitted from the active layer is output, a metal film having an opening whose diameter is smaller than the emission wavelength of the emitted light is formed.
Abstract:
An AlGaInP layer is formed on a substrate made of GaAs, and an AlGaAs layer is formed on the AlGaInP layer via a buffer layer therebetween. The buffer layer has a thickness of about 1.1 nm and is made of AlGaInP whose Ga content is smaller than that of the AlGaInP layer. The buffer layer may alternatively be made of AlGaAs whose Al content is smaller than that of the AlGaAs layer.
Abstract:
A thermal transfer receiving sheet comprising a sheet-like support having sequentially formed on at least one surface thereof a hollow particle-containing intermediate layer and an image receiving layer, wherein the hollow particles have an average particle diameter of 0.2 to 35 μm and a hollow percentage by volume of 30 to 97% and the printing smoothness (Rp value) on the surface of the thermal transfer receiving sheet, as measured by using a Microtopograph under an applied pressure of 0.1 MPa 10 m-seconds after the initiation of pressure application, is 1.5 μm or less. A production method of the thermal transfer receiving sheet is also provided.
Abstract:
A surface emitting laser includes a plurality of light-emitting portions for emitting laser light beams in different linearly polarized light directions. The light-emitting portions are formed on the substrate and located close to each other. The light-emitting portions include metal opening arrays through which light beams in different linearly polarized light directions respectively pass.
Abstract:
A semiconductor laser device according to the present invention has a semiconductor substrate, an active layer formed on the semiconductor substrate and made of a compound semiconductor containing phosphorus, a guide layer formed on the active layer and made of a compound semiconductor a dopant diffusion preventing layer formed on the guide layer and made of a semiconductor compound containing arsenic, and a clad layer formed on the dopant diffusion preventing layer and made of a compound semiconductor containing a dopant.
Abstract:
A semiconductor laser device is provided that includes a first conductivity type semiconductor substrate, a first conductivity type cladding layer provided on the semiconductor substrate and an active layer provided on the cladding layer. The active layer has a super-lattice structure including a disordered region in a vicinity of a cavity end face. A first cladding layer of a second conductivity type is provided on the active layer, an etching stop layer of the second conductivity type is provided on the first cladding layer and a second cladding layer of the second conductivity type is provided on the etching stop layer. The second cladding layer forms a ridge structure that extends along a cavity length direction. An impurity concentration in the etching stop layer in the vicinity of the cavity end face is equal to or smaller than about 2×1018 cm−3.
Abstract translation:提供一种半导体激光器件,其包括第一导电类型半导体衬底,设置在半导体衬底上的第一导电类型覆层和设置在包覆层上的有源层。 有源层具有包括空腔端面附近的无序区域的超晶格结构。 在有源层上设置有第二导电类型的第一包层,在第一包层上设置第二导电类型的蚀刻阻挡层,在蚀刻停止层上设置第二导电类型的第二包覆层。 第二包层形成沿着空腔长度方向延伸的脊结构。 在腔体端面附近的蚀刻停止层中的杂质浓度等于或小于约2×10 18 cm -3 -3。