摘要:
Input data, specifying aspects of a thermal design of a liquid cooled data center, is obtained. The input data includes data indicative of ambient outdoor temperature for a location of the data center; and/or data representing workload power dissipation for the data center. The input data is evaluated to obtain performance of the data center thermal design. The performance includes cooling energy usage; and/or one pertinent temperature associated with the data center. The performance of the data center thermal design is output.
摘要:
Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
摘要:
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers;
摘要:
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
摘要:
An electric potential is applied to first and second electrodes on opposite sides of a gap between an electronic component and a heat spreader. At least one of a thermal interface material in the gap, the electronic component and the heat spreader is subjected to a changing physical condition. The electrical capacitance between the electrodes is monitored during the changing physical condition. Such a method can be practiced using an array of components sharing a common heat spreader. An assembly for testing thermal interfaces includes a printed circuit board, a plurality of electronic components mounted to and operatively associated with the printed circuit board, a heat spreader positioned for absorbing heat generated by the electronic components, a first electrode associated with the heat spreader, a plurality of second electrodes associated, respectively, with the electronic component, and a device for monitoring electrical capacitances between the first and second electrodes. The technique may be employed for monitoring physical changes in electronic devices and other structures having interfaces between components.
摘要:
A heat dissipating structure includes: a heat spreader; and a plurality of compliant beams attached to the heat spreader. The beams are formed of a high-conductive material such that a maximum stress of each beam is less than a fatigue stress of the high-conductive material; said beams are placed at an angle relative to a chip surface such that the beams are able to exert bending compliance in response to x, y, and z forces exerted upon them. The structure also includes a thermal material interface for bonding said structure to the chip surface. Both the heat spreader and the compliant beams can be machined from a copper block. An alternative heat dissipating structure includes compliant beams soldered to the chip surface.
摘要:
An air bearing gap control arrangement for injection molded solder filler heads. Also provided is a method of providing for a gap control for injection molded solder filler heads utilizing an air bearing arrangement. Provided is a C-ring seal, at the lower or dispensing region of the solder filler head structure, wherein the C-shape is open at the leading edge thereof. Hereby, a prevalent leading edge gap is tightly controlled by means of pressurized air in order to form an air bearing. Downstream of this leading edge is the molten solder, which is contained within a very narrow gap height between the solder filler head and the mold. As the solder fills the pits or recesses which are formed in the mold surface, air will rush out or be displaced from the pits towards the air bearing and is then expelled, while the deposited solder remains in place.
摘要:
Data pertaining to environmental information is acquired using sensors on a multiplicity of networked pervasive devices, and analyzed to determine occurrence of at least one environmental event. Such data can be obtained, for example, from an inventive wireless communications device including an antenna, transmit circuitry coupled to the antenna for transmission of radio frequency radiation therefrom, at least one environmental sensor configured to obtain environmental data, and a communications module coupled to the at least one environmental sensor and configured to cause transmission of a representation of the data via the antenna and the transmit circuitry.
摘要:
Improvements in placement of timing patterns in self-servowriting include correcting for systematic errors due to geometric effects. A correction is made for varying systematic errors, such as when the recording head has spatially separate read and write elements. Further, servopattern rotation due to residual or unmeasured systematic errors is reduced by using a once per revolution clock index derived from the motor drive current waveform or any other sensor. In one aspect of correcting for systematic errors in the writing of timing patterns on a storage medium of a storage device, a time interval between a trigger pattern written at a first radial position of the storage medium and a rotational index is measured. The rotational index is related to the rotational orientation of the storage medium with respect to a fixed frame of the storage device. The location of another trigger pattern to be written is shifted, using the measured time interval to determine the shift in location for the another trigger pattern.
摘要:
Embodiments of the present invention provide a technique to correct timing mark position error in self-servo write (SSW). In one embodiment, a method of correcting a timing mark position error of a SSW pattern of a disk drive comprises writing a plurality of timing mark bursts over a plurality of steps on a disk, the plurality of timing mark bursts including at least one misaligned burst having an intentional misalignment in a first step with respect to a corresponding burst in a neighboring second step; reading the misaligned burst and the corresponding burst at a seam between the first step and the second step to obtain a measured burst amplitude; and using the measure burst amplitude to obtain a timing mark position error, which may involve comparing the measured burst amplitude and an expected burst amplitude computed based on the intentional misalignment between the misaligned burst and the corresponding burst to obtain a timing mark position error.