Abstract:
The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
Abstract:
The present invention relates generally to novel GIP analogs and GIP hybrid polypeptides with selectable properties, useful as agents for the treatment and prevention of metabolic diseases and disorders, for example those which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, positive inotropic effects, reduction of catabolic effects, slowing of gastric emptying. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, critical care, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
Abstract:
Peptide-peptidase inhibitor conjugate molecules and methods of manufacture thereof are disclosed. These conjugate molecules are useful as agents for the treatment and prevention of metabolic and cardiovascular diseases, disorders, and conditions. Such diseases, conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, and other diabetes-related disorders.
Abstract:
The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
Abstract:
Compositions and methods are provided for producing adenine nucleotide translocator (ANT) polypeptides and fusion proteins, including the production and use of recombinant expression constructs having a regulated promoter. ANT ligands and compositions and methods for identifying ANT ligands, agents that bind ANT and agents that interact with ANT are also disclosed.
Abstract:
Compositions and methods are provided for producing adenine nucleotide translocator (ANT) polypeptides and fusion proteins, including the production and use of recombinant expression constructs having a regulated promoter. ANT ligands and compositions and methods for identifying ANT ligands, agents that bind ANT and agents that interact with ANT are also disclosed.
Abstract:
Compositions and methods are provided for producing adenine nucleotide translocator (ANT) polypeptides and fusion proteins, including the production and use of recombinant expression constructs having a regulated promoter. ANT ligands and compositions and methods for identifying ANT ligands, agents that bind ANT and agents that interact with ANT are also disclosed.
Abstract:
Compositions and methods are provided for producing adenine nucleotide translocator (ANT) polypeptides and fusion proteins, including the production and use of recombinant expression constructs having a regulated promoter. ANT ligands and compositions and methods for identifying ANT ligands, agents that bind ANT and agents that interact with ANT are also disclosed.
Abstract:
The invention provides compositions and methods for monitoring subcellular compartments such as organelles by energy transfer techniques that do not require specific intermolecular affinity binding events between energy transfer donor and energy transfer acceptor molecules. Provided are methods for assaying cellular membrane potential, including mitochondrial membrane potential, by energy transfer methodologies including fluorescence resonance energy transfer (FRET). Diagnostic and drug screening assays are also provided.