Abstract:
An apparatus for detecting gas concentrations includes a coded filter to oscillate proximate a resonant frequency. A photo detector is positioned below the coded filter such that the coded filter selectively blocks light that is directed at the photo detector. Optics are positioned to project spectral information on to the coded filter. A processor analyzes a signal received from the photo detector. The processor is adapted to weight a harmonic attic signal.
Abstract:
The present invention provides a spectral apparatus for spectrally separating light including a predetermined wavelength, including a slit that the light enters, a first optical system configured to collimate the light from the slit, a transmissive type diffraction element configured to diffract the light from the first optical system, and a second optical system including a first mirror configured to reflect the light diffracted by the transmissive type diffraction element, and a second mirror configured to reflect the light reflected by the first mirror and diffracted by the transmissive type diffraction element, and configured to make the light reciprocally travel between the first mirror and the second mirror via the transmissive type diffraction element.
Abstract:
A low-cost optics, broadband, astigmatism-corrected practical spectrometer. An off-the-shelf cylindrical lens is used to remove astigmatism over the full bandwidth, providing better than 0.1 nm spectral resolution and more than 50% throughput over a bandwidth of 400 nm centered at 800 nm. The spectrometer includes a first spherical mirror disposed along an optical path in an off-axis (tilted) orientation; a diffraction grating disposed along the optical axis in a location optically downstream from the first mirror; a second spherical mirror disposed along the optical path in an off-axis orientation in a location optically downstream from the diffraction grating; a cylindrical optic disposed in the optical path; and a detector disposed in the optical path in a location optically downstream from the second spherical mirror.
Abstract:
Wavenumber linear spectrometers are provided including an input configured to receive electromagnetic radiation from an external source; collimating optics configured to collimate the received electromagnetic radiation; a dispersive assembly including first and second diffractive gratings, wherein the first diffraction grating is configured in a first dispersive stage to receive the collimated electromagnetic radiation and wherein the dispersive assembly includes at least two dispersive stages configured to disperse the collimated input; and an imaging lens assembly configured to image the electromagnetic radiation dispersed by the at least two dispersive stages onto a linear detection array such that the variation in frequency spacing along the linear detection array is no greater than about 10%.
Abstract:
A spectrometer includes: an entrance aperture, a collimator, intended to produce, from a light source, a collimated input light (5), a plurality of gratings arranged in a 2-D matrix, a plurality of detectors, and an exit aperture.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein for a spectrometer comprising at least two dispersive elements configured to receive at least one input optical signal and generate two or more pluralities of spatially separated spectral components, at least a portion of the at least two dispersive elements being implemented on a first substrate; and a single detector array coupled to the at least two dispersive elements and configured to receive and measure two or more pluralities of narrowband optical signals derived from the two or more pluralities of spatially separated spectral components, respectively.
Abstract:
Various embodiments of apparatuses, systems and methods are described herein related to a spectrometer that can generate a plurality of narrowband optical signals having a wavenumber linear format without using an increased number of optical components and without an increase in signal processing.
Abstract:
Optically multiplexed mid-infrared laser systems and the use of such systems for detection and measurement of target materials using multispectral image analysis are disclosed. The systems and methods disclosed herein are useful for detecting and measuring materials in applications such as trace detection, medical diagnostics, medical monitoring, quality control, and high-throughput molecular recognition.
Abstract:
A spectrometry apparatus includes a transmissive diffraction grating that transmits incident light. The transmissive diffraction grating has inclined surfaces made of a first dielectric material. The inclined surfaces are arranged so that they are inclined relative to a reference line. When the angle of incidence of light incident on the transmissive diffraction grating is measured with respect to the reference line and defined as an angle α, and the angle of diffraction of diffracted light is measured with respect to the reference line and defined as an angle β, the angle of incidence α is smaller than a Bragg angle θ defined with respect to the inclined surfaces, and the angle of diffraction β is greater than the Bragg angle θ.
Abstract:
An apparatus for optical spectrometry utilizes a simplified construction, reducing the number of independent optical elements needed while providing a sizeable dispersed spectrum. The apparatus provides a spectral intensity distribution of an input source wherein individual spectral components in the source can be measured and, in some embodiments, can be manipulated or filtered.