MICRO/NANO-MECHANICAL TEST SYSTEM EMPLOYING TENSILE TEST HOLDER WITH PUSH-TO-PULL TRANSFORMER
    201.
    发明申请
    MICRO/NANO-MECHANICAL TEST SYSTEM EMPLOYING TENSILE TEST HOLDER WITH PUSH-TO-PULL TRANSFORMER 有权
    微型/纳米机械测试系统采用推拉变压器的拉伸测试台

    公开(公告)号:US20100095780A1

    公开(公告)日:2010-04-22

    申请号:US12575368

    申请日:2009-10-07

    Abstract: A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

    Abstract translation: 一种用于对包括第一结构和第二结构的微米至纳米尺度材料样品的拉伸测试的基于微机械或微机电系统(MEMS)的推挽式机械变压器。 第二结构通过至少一个可使第二结构相对于第一结构运动的柔性元件耦合到第一结构,其中第二结构相对于第一结构设置,以便在第一结构之间形成牵引间隙 以及第二结构,使得当在拉伸延伸方向上施加外推力并推动所述第二结构时,所述牵引间隙的宽度增加,以便对安装在所述牵引间隙上的第一样品 第一结构上的安装区域和第二结构上的第二样品安装区域。

    Quantum dot based pressure switch
    202.
    发明授权
    Quantum dot based pressure switch 失效
    基于量子点的压力开关

    公开(公告)号:US07358581B2

    公开(公告)日:2008-04-15

    申请号:US11281093

    申请日:2005-11-17

    CPC classification number: G01L9/0098 B82Y10/00 G01L1/005 H01L29/127

    Abstract: A semiconductor heterostructure based pressure switch comprising: first and second small bandgap material regions separated by a larger bandgap material region; a third small bandgap material region within the region of larger bandgap material, the third material region and larger bandgap material region defining at least one quantum dot; and, first and second electrodes electrically coupled to the first and second small bandgap material regions, respectively, wherein the electrodes are sufficiently proximate to said quantum dot to facilitate electron tunneling there between when a pressure is applied to the bandgap material defining the quantum dot.

    Abstract translation: 一种基于半导体异质结构的压力开关,包括:由较大带隙材料区域分隔的第一和第二小带隙材料区域; 在较大带隙材料的区域内的第三小带隙材料区域,第三材料区域和限定至少一个量子点的较大带隙材料区域; 以及分别电耦合到第一和第二小带隙材料区域的第一和第二电极,其中当将压力施加到限定量子点的带隙材料时,电极足够靠近所述量子点以促进电子隧穿。

    Wireless communication terminal
    203.
    发明申请
    Wireless communication terminal 审中-公开
    无线通信终端

    公开(公告)号:US20080062052A1

    公开(公告)日:2008-03-13

    申请号:US11899591

    申请日:2007-09-06

    CPC classification number: H01Q1/273 G01L1/005 H01Q1/22

    Abstract: According to an embodiment of the invention, there is provided a wireless communication terminal including; a deformable body made of a flexible material; an antenna; a radio frequency part of which a position relative to the antenna is valiable according to a deformation of the deformable body; a strain sensor detecting the deformation of the deformable body; a matching circuit acquiring an impedance matching with respect to the antenna; and a matching control unit configured to make matching control of the matching circuit according to a result of the detection of the strain sensor.

    Abstract translation: 根据本发明的实施例,提供一种无线通信终端,包括: 由柔性材料制成的可变形体; 天线 射频其一部分相对于所述天线的位置是valiable根据所述可变形主体的变形; 检测变形体的变形的应变传感器; 获取相对于天线的阻抗匹配的匹配电路; 以及匹配控制单元,用于根据所述检测的应变传感器的结果以使匹配电路的匹配控制。

    Nanotube semiconductor structures with varying electrical properties
    204.
    发明申请
    Nanotube semiconductor structures with varying electrical properties 审中-公开
    具有不同电性能的纳米管半导体结构

    公开(公告)号:US20040188780A1

    公开(公告)日:2004-09-30

    申请号:US10396176

    申请日:2003-03-25

    Inventor: Anthony D. Kurtz

    Abstract: There is disclosed a nanotube sensor which essentially employs a straight or twisted nanotube deposited on a supporting surface, such as silicon, silicon dioxide and some other semiconductor or metal material. The nanotube is basically a graphite device which is now subjected to stress causing the electrical characteristics of the nanotube to change according to stress. The nanotube is then provided in a circuit, such as a Wheatstone Bridge or other circuit, and the circuit will produce an output signal proportional to the change in electrical characteristics of the nanotube according to the applied force.

    Abstract translation: 公开了一种纳米管传感器,其基本上采用沉积在诸如硅,二氧化硅和一些其它半导体或金属材料的支撑表面上的直的或扭曲的纳米管。 纳米管基本上是石墨装置,其现在受到使纳米管的电特性根据应力而变化的应力。 然后将纳米管提供在例如惠斯通电桥或其他电路的电路中,并且该电路将根据所施加的力产生与纳米管的电特性变化成比例的输出信号。

    State identification of electrically conductive oblong tensioning elements using resonance frequencies and a computer program
    205.
    发明申请
    State identification of electrically conductive oblong tensioning elements using resonance frequencies and a computer program 审中-公开
    使用共振频率的状态识别导电长椭圆形张紧元件和计算机程序

    公开(公告)号:US20040073408A1

    公开(公告)日:2004-04-15

    申请号:US10466247

    申请日:2003-10-29

    Abstract: The invention relates to a method for identifying the state (point of rupture 2) of electrically conductive oblong tensioning elements (1) involving the following steps: launching an electromagnetic measurment signal into a tensioning element (1a); changing the frequency; measuring the reflection spectrum, and; indentifying the state of the tensioning element (1a) according to the resonance frequencies. Said signal is lauched on the fore-part or on the periphery. In the event of coupled tensioning element (1), a scattering matrix system of equations is iteratively devised. The invention is used in the construction industry for prestressed concrete structures and rear anchored systems.

    Abstract translation: 本发明涉及一种用于识别导电长方形张紧元件(1)的状态(断裂点2)的方法,包括以下步骤:将电磁测量信号发射到张紧元件(1a)中; 改变频率; 测量反射光谱,和; 根据共振频率来确定张紧元件(1a)的状态。 所述信号在前部或外围被刷新。 在耦合张力元件(1)的情况下,迭代地设计了散射矩阵方程组。 本发明用于建筑工业中预应力混凝土结构和后锚固系统。

    Sensor apparatus using an electrochemical cell
    206.
    发明授权
    Sensor apparatus using an electrochemical cell 失效
    使用电化学电池的传感器装置

    公开(公告)号:US06586810B2

    公开(公告)日:2003-07-01

    申请号:US10217810

    申请日:2002-08-12

    Applicant: Mrinal Thakur

    Inventor: Mrinal Thakur

    CPC classification number: G01L1/005 G01L11/00 G01P15/08

    Abstract: A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

    Abstract translation: 公开了用于感测力,应力,应变,压力和加速度等机械量的方法。 该技术基于施加力,应力,应变,压力或加速度的电化学发生电压(电动势)的变化。 电压的变化是由于电池单元中电极(阳极和阴极)的相对位置或取向发生变化而导致的电化学电池内阻的变化。 要检测的信号(例如力,应力,应变,压力或加速度)被施加到电极中的一个以引起电极之间的相对位置或取向的改变。 可以使用各种材料,固体,半固体,凝胶,糊剂或液体作为电解质。 电解液必须是离子导体。 固体电解质的实例包括特定的聚合物导体,聚合物复合材料,离子导电玻璃和陶瓷。 电极由诸如具有不相似的电负性的金属的导体制成。 获得显着增强的敏感性,比可比较的商业传感器高出三个数量级。 这些材料比用于机械传感器的商业使用材料便宜得多。 使用诸如掺杂的1,4-顺 - 多异丙烯和nafion的材料来感测这种机械量的装置。 1,4-顺式 - 聚异丙烯可掺杂高氯酸锂或碘。 输出电压信号随着给定应力的感测面积的增加而增加。 该设备可用作入侵者报警器,以及其他应用。

    Method and sensor for detecting strain using shape memory alloys
    207.
    发明申请
    Method and sensor for detecting strain using shape memory alloys 失效
    使用形状记忆合金检测应变的方法和传感器

    公开(公告)号:US20020062692A1

    公开(公告)日:2002-05-30

    申请号:US09726257

    申请日:2000-11-30

    CPC classification number: F02C9/28 F02D41/3005 F23N5/022 G01B5/30 G01L1/005

    Abstract: A method and sensor for detecting strain using shape memory alloys is disclosed. The sensor comprises a substrate material, a flexible diaphragm provided on the substrate material and a thin film SMA material deposited on the flexible diaphragm. The thin film SMA material is capable of undergoing a phase transformation in response to a physical stimulus being applied thereto. During such a phase transformation, a change occurs in the electrical resistance of the thin film SMA material. By measuring the value of the electrical resistance of the thin film SMA material immediately before and after the thin film SMA material undergoes a phase transformation, the difference in the value of the electrical resistance can be determined and utilized to determine the magnitude of the physical stimulus that was applied to the thin film SMA material causing it to undergo a phase transformation.

    Abstract translation: 公开了一种使用形状记忆合金检测应变的方法和传感器。 传感器包括基底材料,设置在基底材料上的柔性隔膜和沉积在柔性隔膜上的薄膜SMA材料。 薄膜SMA材料能够响应于施加到其上的物理刺激而经历相变。 在这种相变期间,薄膜SMA材料的电阻发生变化。 通过在薄膜SMA材料经历相变之前和之后测量薄膜SMA材料的电阻值,可以确定和利用电阻值的差异来确定物理刺激的大小 其被应用于使其经历相变的薄膜SMA材料。

    Methods and apparatus for measuring stress and strain characteristics of
microscopic specimens
    209.
    发明授权
    Methods and apparatus for measuring stress and strain characteristics of microscopic specimens 失效
    用于测量微观样品的应力和应变特性的方法和装置

    公开(公告)号:US5723793A

    公开(公告)日:1998-03-03

    申请号:US783043

    申请日:1997-01-15

    CPC classification number: G01L1/005 G01B7/16 G01N2203/0075 G01N2203/0286

    Abstract: Methods and apparatus are disclosed for measuring stress and strain of microscopic specimens under a microscope. The measurements of strain can be performed simultaneously with measurement of the stress, thereby avoiding problems with creep. The apparatus and methods employ an electrically driven microgripper having at least one finger adapted to contact the specimen. The apparatus and methods also employ a device operable to measure the dimensional change (strain) experienced by the specimen upon application of a stress to the specimen using the finger(s) of the microgripper. From measurements of electrical energy supplied to the microgripper before and during application of the stress to the specimen, and of the stress-caused dimensional change of the specimen, stress-versus-strain information about the specimen can be calculated.

    Abstract translation: 公开了用于在显微镜下测量微观样品的应力和应变的方法和装置。 应变的测量可以同时测量应力,从而避免蠕变问题。 该装置和方法采用具有适于接触样本的至少一个手指的电驱动微爪。 该装置和方法还采用一种可操作的装置,用于测量使用微夹爪的手指向样品施加应力时样品经历的尺寸变化(应变)。 通过测量在施加应力之前和施加应力时对试样的微能力以及试样的应力引起的尺寸变化,可以计算关于试样的应力 - 应变信息。

Patent Agency Ranking