Abstract:
The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
Abstract:
An apparatus is disclosed for the hydroconversion of hydrocarbon feedstock with a hydrogen gas at elevated temperature and pressure with the use of a catalyst. The apparatus is a reactor vessel with a grid plate distributor for improved gas liquid distribution. The distributor comprises a grid plate and a bubble cap assembly with a plurality of tubular risers extending through the grid plate. Each tubular riser has an upper section above the grid plate and a lower section below the grid plate, the lower section terminated with an open bottom end for ingress of the hydrogen gas and hydrocarbon feedstock, the upper section having a closed top terminated with a housing cap. Each tubular riser has at least a vertical slot and a least a laterally placed opening sufficiently sized such that in operation, the liquid level in the zone below the grid plate is above the vertical slot and below the laterally placed opening.
Abstract:
The present invention relates to novel interstitial metal hydrides and catalyst containing interstitial metal hydrides that are resistant to oxidation and resultant loss of catalytic activity. The processes of the present invention include use of these improved, oxidation resistant interstitial metal hydride compositions for improved overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
Abstract:
The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
Abstract:
A process where the need to circulate hydrogen through the catalyst is eliminated is provided. This is accomplished by mixing and/or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is “high” relative to the feed. The type and amount of diluent added, as well as the reactor conditions, can be set so that all of the hydrogen required in the hydroprocessing reactions may be available in solution. The oil/diluent/hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required, therefore, hydrogen recirculation is avoided and trickle bed operation of the reactors is avoided. Therefore, the large trickle bed reactors can be replaced by much smaller tubular reactor.
Abstract:
An improved process and apparatus for hydrogenating a stream of hydrocarbons is provided. The pressure and temperature of the stream are elevated and the stream is passed through two or more serially connected hydrogenation reaction zones. While passing through the reaction zones hydrogen is dispersed in the stream and the stream is caused to flow along successive downward and upward paths. The reacted stream is cooled prior to reducing the pressure exerted thereon.
Abstract:
A CHD reactor is modified to include a feed nozzle arrangement which hydrogen-saturates the charged liquid before distribution across the fixed catalyst bed by a pair of gas/liquid distributor trays. Product is recovered from the catalyst bed through an apparatus arrangement comprising Glitsch grid to maintain low pressure drop in the system.
Abstract:
A multi-stage process for the production of a Product Heavy Marine Fuel Oil compliant with ISO 8217:2017 as a Table 2 residual marine fuel from a high sulfur Feedstock Heavy Marine Fuel Oil compliant with ISO 8217:2017 as a Table 2 residual marine fuel except for the sulfur level, involving hydrotreating under reactive distillation conditions in a Reaction System composed of one or more reaction vessels. The reactive distillation conditions allow more than 75% by mass of the Process Mixture to exit the bottom of the reaction vessel as Product Heavy Marine Fuel Oil. The Product Heavy Marine Fuel Oil has a maximum sulfur content (ISO 14596 or ISO 8754) less than 0.5 mass %. A process plant for conducting the process for conducting the process is disclosed.
Abstract:
Catalyst comprising an active phase based on at least one group VIB metal, at least one group VIII metal, phosphorus, sodium and an alumina-based support, the sodium content being between 50 and 2000 ppm by weight in the form of Na—O relative to the total weight of said catalyst, and the molar ratio of phosphorus to sodium being between 1.5 and 300.