Abstract:
In an electron beam lithography system, an outputted main signal is applied directly to deflection plates, whereas an outputted auxiliary signal is applied to the deflection plate through a capacitive coupling for thereby writing a wide strip-like pattern accurately at a high speed. According to the present invention, in the electron beam lithography system, a deflection signal is divided into a main signal having a low frequency and a large amplitude and an auxiliary signal having a high frequency and a small amplitude. The main signal is applied directly to deflection plates, and the auxiliary signal is applied to the deflection plate through a capacitor. In the case of writing a straight line having a certain width, and a solid graphic pattern, because the electron beam is deflected in a given direction and a given width by the use of the auxiliary signal in synchronism with one sweeping cycle based on the main signal, a line whose width is as wide as many times of the electron beam diameter can be written, and a graphic pattern having a certain width can be written at a high speed.
Abstract:
Deflectors are disclosed that are suitable for use in various charged-particle-beam (CPB) optical systems as used, for example, in CPB microlithography systems. The deflectors produce a strong magnetic beam-deflecting field when energized with a relatively small electrical current. The beam-deflecting field thus produced is stable with respect to temperature changes, is little affected by eddy currents, and exhibits low aberration caused by manufacturing tolerances of the coil and core. In an exemplary method for manufacturing such a deflector, a magnetic-tape laminate is used as the core. Also, high-precision positioning of the coil and the magnetic-tape laminate is performed using photolithography and electrocasting. Positioning of the magnetic-tape laminate can be performed using a resist pattern formed by photolithography.
Abstract:
A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
Abstract:
A beam blanker array includes a base plate, a plurality of conductor pads, and a ground plate. The conductor pads are arranged in a one-dimensional array on the base plate. The ground plate is coupled to the base plate over the plurality of conductor pads with a gap between the base plate and the ground plate. Each of the plurality of conductor pads forms a beam blanker across the gap with the ground plate.
Abstract:
A deflection system is presented for use in a lens arrangement of a charged particle beam column for inspecting a sample. The system comprises a magnetic deflector operable to create a magnetic field, and a pole piece assembly at least partly accommodated within the magnetic field. The pole piece assembly has a portion made of a soft magnetic material and is formed with an opening for a charged particle beam propagation therethrough. The deflection system allows for conducting the magnetic field created by the magnetic deflector through the pole piece assembly towards the opening in the pole piece assembly. This enables to increase the magnetic field value in the vicinity of the sample at the optical axis of the lens arrangement at a given electric current through the excitation coils of the magnetic deflector, without a need to increase a working distance.
Abstract:
A technique employing volume conductive electrodes for the generation of linear or non-linear electric fields is provided for devices used in charged ion optics. A hollow cylinder of a conductive polymer, which is loaded with conductive carbon particles or inherently conductive, and which is used to improve the performance of a dual stage gridless reflectron. Instrumental resolution measurements comparing a conventional discrete ring reflectron with a hybrid polymeric/discrete ring validate the design.
Abstract:
An ion optic device is dimensionally stable over variations in temperature when constructed with a ceramic or glass-ceramic substrate. A conductive or resistive coating is applied on surfaces of the substrate that are required to be particularly conductive or resistive for the function of the ion optic device.
Abstract:
A scanning electron microscope system with an electrostatic magnetic field complex objective lens, comprising at least two or more deflection means for tilting a primary electron beam and for projecting the primary electron beam onto a specimen, wherein one of the deflection means is arranged near the objective lens so as to generate a deflection field and also to serve as a compensation field for compensating abaxial aberration at the same time, and abaxial aberration of the primary electron beam deflected by the deflection means is compensated.
Abstract:
The invention provides an improved column for a charged particle beam device. The column comprises deflectors for scanning the beam over the specimen, for aligning the beam with regard to the objective and for compensating aberrations caused by the objective. Thereby, the total number of electrode arrangements and/or coil arrangements that are used for the deflectors and that are independently controllable, is 8 or less.
Abstract:
A system for amplifying a scan of an ion beam is provided. Examples of the system include a magnetic scanner and a beam amplifier in combination. The magnetic scanner is configured to scan the ion beam in a single plane. The beam amplifier is configured to receive the ion beam from the magnetic scanner, amplify a divergence of the ion beam, and focus the ion beam in the single plane.